Citation: | PENG Ruihui, LAI Jie, SUN Dianxing, LI Mang, YAN Ruyu, LI Xue. A Camouflaged Target Detection Method with Improved YOLOv5 Algorithm[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3324-3333. doi: 10.11999/JEIT231170 |
[1] |
SINGH S K, DHAWALE C A, and MISRA S. Survey of object detection methods in camouflaged image[J]. IERI Procedia, 2013, 4: 351–357. doi: 10.1016/j.ieri.2013.11.050.
|
[2] |
王荣昌, 王峰, 任帅军, 等. 基于双流融合网络的单兵伪装偏振成像检测[J]. 光学学报, 2022, 42(9): 0915001. doi: 10.3788/AOS202242.0915001.
WANG Rongchang, WANG Feng, REN Shuaijun, et al. Polarization imaging detection of individual camouflage based on two-stream fusion network[J]. Acta Optica Sinica, 2022, 42(9): 0915001. doi: 10.3788/AOS202242.0915001.
|
[3] |
LE T N, NGUYEN T V, NIE Zhongliang, et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45–56. doi: 10.1016/j.cviu.2019.04.006.
|
[4] |
FAN Dengping, JI Gepeng, SUN Guolei, et al. Camouflaged object detection[C]. IEEE/CVF Conference On Computer Vision And Pattern Recognition, Seattle, USA, 2020: 2774–2784. doi: 10.1109/CVPR42600.2020.00285.
|
[5] |
FAN Dengping, JI Gepeng, ZHOU Tao, et al. PraNet: Parallel reverse attention network for polyp segmentation[C]. The 23rd International Conference on Medical Image Computing and Computer Assisted Intervention–MICCAI 2020, Lima, Peru, 2020: 263–273. doi: 10.1007/978-3-030-59725-2_26.
|
[6] |
TANKUS A and YESHURUN Y. Convexity-based visual camouflage breaking[J]. Computer Vision and Image Understanding, 2001, 82(3): 208–237. doi: 10.1006/cviu.2001.0912.
|
[7] |
BHAJANTRI N U and NAGABHUSHAN P. Camouflage defect identification: A novel approach[C]. The 9th International Conference on Information Technology, Bhubaneswar, India, 2006: 145–148. doi: 10.1109/ICIT.2006.34.
|
[8] |
ZHANG Wei, ZHOU Qikai, LI Ruizhi, et al. Research on camouflaged human target detection based on deep learning[J]. Computational Intelligence and Neuroscience, 2022, 2022: 7703444. doi: 10.1155/2022/7703444.
|
[9] |
赖杰, 彭锐晖, 孙殿星, 等. 融合注意力机制与多检测层结构的伪装目标检测[J]. 中国图象图形学报, 2024, 29(1): 134–146. doi: 10.11834/jig.221189.
LAI Jie, PENG Ruihui, SUN Dianxing, et al. Detection of camouflage targets based on attention mechanism and multi-detection layer structure[J]. Journal of Image and Graphics, 2024, 29(1): 134–146. doi: 10.11834/jig.221189.
|
[10] |
刘珩, 冉建国, 杨鑫, 等. 基于DETR的迷彩伪装目标检测[J]. 现代电子技术, 2022, 45(17): 41–46. doi: 10.16652/j.issn.1004-373x.2022.17.008.
LIU Heng, RAN Jianguo, YANG Xin, et al. Camouflage target detection based on detection transformer[J]. Modern Electronics Technique, 2022, 45(17): 41–46. doi: 10.16652/j.issn.1004-373x.2022.17.008.
|
[11] |
YADAV D, ARORA M K, TIWARI K C, et al. Detection and identification of camouflaged targets using hyperspectral and LiDAR data[J]. Defence Science Journal, 2018, 68(6): 540–546. doi: 10.14429/dsj.68.12731.
|
[12] |
HU Jianghua, CUI Guangzhen, and QIN Lie. A new method of multispectral image processing with camouflage effect detection[C]. SPIE 9675, AOPC 2015: Image Processing and Analysis, Beijing, China, 2015: 967510. doi: 10.1117/12.2199206.
|
[13] |
CHENG Xiaolong, GENG Keke, WANG Ziwei, et al. SLBAF-net: Super-lightweight bimodal adaptive fusion network for UAV detection in low recognition environment[J]. Multimedia Tools and Applications, 2023, 82(30): 47773–47792. doi: 10.1007/s11042-023-15333-w.
|
[14] |
FANG Qingyun, HAN Depeng, and WANG Zhaokui. Cross-modality fusion transformer for multispectral object detection[J]. arXiv: 2111.00273, 2021. doi: 10.48550/arXiv.2111.00273.
|
[15] |
MA Jiayi, MA Yong, and Li Chang. Infrared and visible image fusion methods and applications: A survey[J]. Information Fusion, 2019, 45: 153–178. doi: 10.1016/j.inffus.2018.02.004.
|
[16] |
聂茜茜, 肖斌, 毕秀丽, 等. 基于超像素级卷积神经网络的多聚焦图像融合算法[J]. 电子与信息学报, 2021, 43(4): 965–973. doi: 10.11999/JEIT191053.
NIE Xixi, XIAO Bin, BI Xiuli, et al. Multi-focus image fusion algorithm based on super pixel level convolutional neural network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 965–973. doi: 10.11999/JEIT191053.
|
[17] |
GEVORGYAN Z. SIoU loss: More powerful learning for bounding box regression[J]. arXiv: 2205.12740, 2022. doi: 10.48550/arXiv.2205.12740.
|