Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
XU Yongjun, XU Juan, TIAN Qinyu, HUANG Chongwen. Robust Resource Allocation Algorithm for Reconfigurable Intelligent Surface-assisted Backscatter Communication Systems Based on Statistical Channel State Information[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1986-1995. doi: 10.11999/JEIT231169
Citation: XU Yongjun, XU Juan, TIAN Qinyu, HUANG Chongwen. Robust Resource Allocation Algorithm for Reconfigurable Intelligent Surface-assisted Backscatter Communication Systems Based on Statistical Channel State Information[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1986-1995. doi: 10.11999/JEIT231169

Robust Resource Allocation Algorithm for Reconfigurable Intelligent Surface-assisted Backscatter Communication Systems Based on Statistical Channel State Information

doi: 10.11999/JEIT231169
Funds:  The National Natural Science Foundation of China (62271094, U23A20279), The Key Fund of Natural Science Foundation of Chongqing (CSTB2022NSCQ-LZX0009, CSTB2023NSCQ-LZX0079), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The National Key R&D Program of China (20221YFA00500), The Graduate Scientific Research Innovation Project of Chongqing (CYB23241, CYS23450)
  • Received Date: 2023-10-30
  • Rev Recd Date: 2023-12-05
  • Available Online: 2023-12-19
  • Publish Date: 2024-05-30
  • In order to solve the problems of short-distance communication, lower system throughput and the effects of channel uncertainties in traditional Backscatter Communication (BackCom) systems, a robust resource allocation algorithm for a Reconfigurable Intelligent Surface (RIS)-assisted backscatter communication system with statistical Channel State Information (CSI) is proposed in this paper. A system weighting and sum throughput-maximization robust resource allocation model is formulated by considering the maximum transmit power constraint of the power station, the energy outage constraint and throughput outage constraint of backscatter nodes, the reflection coefficient constraint, the phase shift constraint of the RIS and the information transmission time constraint; Then, the original non-convex problem is transformed into a convex optimization problem by using the methods of Bernstein-type inequality, the alternating optimization, and the semi-definite relaxation technique. An iteration-based robust throughput maximization algorithm is designed. Simulation results show that the proposed algorithm had stronger robustness and higher throughput compared it with the traditional non-robust resource allocation algorithm and the resource allocation algorithm without RIS.
  • loading
  • [1]
    XU Yongjun, GUI Guan, GACANIN Haris, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2]
    XU Yongjun, QIN Zhijin, GUI Guan, et al. Energy efficiency maximization in NOMA enabled backscatter communications with QoS guarantee[J]. IEEE Wireless Communications Letters, 2021, 10(2): 353–357. doi: 10.1109/LWC.2020.3031042.
    [3]
    XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [4]
    张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000−436x.2022199.

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000−436x.2022199.
    [5]
    LI Dong. How many reflecting elements are needed for energy- and spectral-efficient intelligent reflecting surface-assisted communication[J]. IEEE Transactions on Communications, 2022, 70(2): 1320–1331. doi: 10.1109/TCOMM.2021.3128544.
    [6]
    DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2450–2525. doi: 10.1109/JSAC.2020.3007211.
    [7]
    MA Hui, ZHANG Haijun, ZHANG Ning, et al. Reconfigurable intelligent surface with energy harvesting assisted cooperative ambient backscatter communications[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1283–1287. doi: 10.1109/LWC.2022.3164257.
    [8]
    HAKIMI A, ZARGARI S, TELLAMBURA C, et al. IRS-enabled backscattering in a downlink non-orthogonal multiple access system[J]. IEEE Communications Letters, 2022, 26(12): 2984–2988. doi: 10.1109/LCOMM.2022.3204489.
    [9]
    GALAPPATHTHIGE D L, REZAEI F, TELLAMBURA C, et al. RIS-empowered ambient backscatter communication systems[J]. IEEE Wireless Communications Letters, 2023, 12(1): 173–177. doi: 10.1109/LWC.2022.3220158.
    [10]
    ZUO Jiakou, LIU Yuanwei, YANG Liang, et al. Reconfigurable intelligent surface enhanced NOMA assisted backscatter communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 7261–7266. doi: 10.1109/TVT.2021.3087582.
    [11]
    LV Weigang, BAI Jiale, YAN Qing, et al. RIS-assisted green secure communications: Active RIS or passive RIS?[J]. IEEE Wireless Communications Letters, 2023, 12(2): 237–241. doi: 10.1109/LWC.2022.3221609.
    [12]
    REHMAN H U, BELLILI F, MEZGHANI A, et al. Modulating intelligent surfaces for multiuser MIMO systems: Beamforming and modulation design[J]. IEEE Transactions on Communications, 2022, 70(5): 3234–3249. doi: 10.1109/TCOMM.2022.3160540.
    [13]
    ZHAO Jinqiu, YE Jia, GUO Shuaishuai, et al. Reconfigurable intelligent surface enabled joint backscattering and communication[J]. IEEE Transactions on Vehicular Technology, 2023: 1–12. doi: 10.1109/TVT.2023.3305330.
    [14]
    吕斌, 曹怡, 李健, 等. IRS辅助的认知反向散射通信网络性能增强方案[J]. 通信学报, 2021, 42(12): 172–181. doi: 10.11959/ j.issn.1000−436x.2021233.

    LV Bin, CAO Yi, LI Jian, et al. Performance enhancement scheme for IRS-assisted cognitive backscatter communication network[J]. Journal on Communications, 2021, 42(12): 172–181. doi: 10.11959/j.issn.1000−436x.2021233.
    [15]
    GONG Shimin, HUANG Xiaoxia, XU Jing, et al. Backscatter relay communications powered by wireless energy beamforming[J]. IEEE Transactions on Communications, 2018, 66(7): 3187–3200. doi: 10.1109/TCOMM.2018.2809613.
    [16]
    张晓茜, 徐勇军, 吴翠先, 等. 智能反射面增强的全双工环境反向散射通信系统波束成形算法[J]. 电子与信息学报, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.

    ZHANG Xiaoxi, XU Yongjun, WU Cuixian, et al. Beamforming design for reconfigurable intelligent surface enhanced full-duplex ambient backscatter communication networks[J]. Journal of Electronics & Information Technology, 2024, 46(3): 914–924. doi: 10.11999/JEIT230356.
    [17]
    GU Bowen, LI Dong, LIU Ye, et al. Exploiting constructive interference for backscatter communication systems[J]. IEEE Transactions on Communications, 2023, 71(7): 4344–4359. doi: 10.1109/TCOMM.2023.3277519.
    [18]
    WANG Kunyun, SO A M C, CHANG T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[J]. IEEE Transactions on Signal Processing, 2014, 62(21): 5690–5705. doi: 10.1109/TSP.2014.2354312.
    [19]
    XIN Yanan, XU Yongjun, LIU Qilie, et al. Robust and outage-constrained energy efficiency optimization in RIS-assisted NOMA networks[C]. 2022 IEEE 95th Vehicular Technology Conference, Helsinki, Finland, 2022: 1–5. doi: 10.1109/VTC2022-Spring54318.2022.9860985.
    [20]
    ZHOU Gui, PAN Cunhua, REN Hong, et al. A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[J]. IEEE Transactions on Signal Processing, 2020, 68: 5092–5106. doi: 10.1109/TSP.2020.3019666.
    [21]
    XU Yongjun, JIANG Siqiao, XUE Qing, et al. Throughput maximization for NOMA-based cognitive backscatter communication networks with imperfect CSI[J]. IEEE Internet of Things Journal, 2023, 10(22): 19595–19606. doi: 10.1109/JIOT.2023.3289181.
    [22]
    YU Xianghao, XU Dongfang, SUN Ying, et al. Robust and secure wireless communications via intelligent reflecting surfaces[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2637–2652. doi: 10.1109/JSAC.2020.3007043.
    [23]
    LI Xingwang, ZHAO Mengle, ZENG Ming, et al. Hardware impaired ambient backscatter NOMA systems: Reliability and security[J]. IEEE Transactions on Communications, 2021, 69(4): 2723–2736. doi: 10.1109/TCOMM.2021.3050503.
    [24]
    LI Xingwang, WANG Qunshu, ZENG Ming, et al. Physical-layer authentication for ambient backscatter-aided NOMA symbiotic systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2288–2303. doi: 10.1109/TCOMM.2023.3245659.
    [25]
    ZHANG Yu, LI Bin, GAO Feifei, et al. A robust design for ultra reliable ambient backscatter communication systems[J]. IEEE Internet of Things Journal, 2019, 6(5): 8989–8999. doi: 10.1109/JIOT.2019.2925843.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (427) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return