Citation: | ZHAO Yu, CHEN Siguang. Local Adaptive Federated Learning with Channel Personalized Normalization[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3174-3183. doi: 10.11999/JEIT231165 |
[1] |
KAISSIS G A, MAKOWSKI M R, RÜCKERT D, et al. Secure, privacy-preserving and federated machine learning in medical imaging[J]. Nature Machine Intelligence, 2020, 2(6): 305–311. doi: 10.1038/s42256-020-0186-1.
|
[2] |
TANG Zhenheng, SHI Shaohuai, and CHU Xiaowen. Communication-efficient decentralized learning with sparsification and adaptive peer selection[C]. IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 2020: 1207–1208. doi: 10.1109/ICDCS47774.2020.00153.
|
[3] |
YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 12. doi: 10.1145/3298981.
|
[4] |
CHEN Yang, SUN Xiaoyan, and JIN Yaochu. Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(10): 4229–4238. doi: 10.1109/TNNLS.2019.2953131.
|
[5] |
WU Donglei, ZOU Xiangyu, ZHANG Shuyu, et al. SmartIdx: Reducing communication cost in federated learning by exploiting the CNNs structures[C]. The 36th AAAI Conference on Artificial Intelligence, 2022: 4254–4262. doi: 10.1609/aaai.v36i4.20345.
|
[6] |
MILLS J, HU Jia, and MIN Geyong. Communication-efficient federated learning for wireless edge intelligence in IoT[J]. IEEE Internet of Things Journal, 2020, 7(7): 5986–5994. doi: 10.1109/JIOT.2019.2956615.
|
[7] |
SATTLER F, WIEDEMANN S, MÜLLER K R, et al. Robust and communication-efficient federated learning from non-I. I. D. data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3400–3413. doi: 10.1109/TNNLS.2019.2944481.
|
[8] |
DUAN Moming, LIU Duo, CHEN Xianzhang, et al. Astraea: Self-balancing federated learning for improving classification accuracy of mobile deep learning applications[C]. IEEE 37th International Conference on Computer Design (ICCD), Abu Dhabi, United Arab Emirates, 2019: 246–254. doi: 10.1109/ICCD46524.2019.00038.
|
[9] |
LIM W Y B, LUONG N C, HOANG D T, et al. Federated learning in mobile edge networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(3): 2031–2063. doi: 10.1109/COMST.2020.2986024.
|
[10] |
MENDIETA M, YANG Taojiannan, WANG Pu, et al. Local learning matters: Rethinking data heterogeneity in federated learning[C]. The 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, USA, 2022: 8387–8396. doi: 10.1109/CVPR52688.2022.00821.
|
[11] |
WANG Jianyu, LIU Qinghua, LIANG Hao, et al. Tackling the objective inconsistency problem in heterogeneous federated optimization[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 638. doi: 10.48550/arXiv.2007.07481.
|
[12] |
LI Qinbin, HE Bingsheng, and SONG D. Model-contrastive federated learning[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 10708–10717. doi: 10.1109/CVPR46437.2021.01057.
|
[13] |
GHOSH A, CHUNG J, YIN Dong, et al. An efficient framework for clustered federated learning[J]. IEEE Transactions on Information Theory, 2022, 68(12): 8076–8091. doi: 10.1109/TIT.2022.3192506.
|
[14] |
SATTLER F, MÜLLER K R, and SAMEK W. Clustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3710–3722. doi: 10.1109/TNNLS.2020.3015958.
|
[15] |
KULKARNI V, KULKARNI M, and PANT A. Survey of personalization techniques for federated learning[C]. The 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 2020: 794–797. doi: 10.1109/WorldS450073.2020.9210355.
|
[16] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, USA, 2017: 1273–1282.
|
[17] |
ZHAO Zhongyuan, FENG Chenyuan, HONG Wei, et al. Federated learning with non-iid data in wireless networks[J]. IEEE Transactions on Wireless Communications, 2021, 21(3): 1927–1942. doi: 10.1109/TWC.2021.3108197.
|
[18] |
KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: A highly efficient gradient boosting decision tree[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 3149–3157.
|
[19] |
LI Qinbin, DIAO Yiqun, CHEN Quan, et al. Federated learning on non-IID data silos: An experimental study[C]. 2022 IEEE 38th International Conference on Data Engineering, Kuala Lumpur, Malaysia, 2022: 965–978. doi: 10.1109/ICDE53745.2022.00077.
|
[20] |
LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[C]. Machine Learning and Systems, Austin, USA, 2020: 1–22. doi: 10.48550/arXiv.1812.06127.
|
[21] |
WANG Hao, KAPLAN Z, NIU Di, et al. Optimizing federated learning on non-iid data with reinforcement learning[C]. The IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, Toronto, Canada, 2020: 1698–1707. doi: 10.1109/INFOCOM41043.2020.9155494.
|
[22] |
WANG Hongyi, YUROCHKIN M, SUN Yuekai, et al. Federated learning with matched averaging[C]. The 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020: 1–16.
|
[23] |
HUANG Yutao, CHU Lingyang, ZHOU Zirui, et al. Personalized cross-silo federated learning on non-IID data[C]. The 35th AAAI Conference on Artificial Intelligence, 2021: 7865–7873. doi: 10.1609/aaai.v35i9.16960.
|
[24] |
LI Xinchun, ZHAN Dechuan, SHAO Yunfeng, et al. FedPHP: Federated personalization with inherited private models[C]. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Bilbao, Spain, 2021: 587–602. doi: 10.1007/978-3-030-86486-6_36.
|
[25] |
ZHANG M, SAPRA K, FIDLER S, et al. Personalized federated learning with first order model optimization[C]. The 9th International Conference on Learning Representations (ICLR), 2021: 1–17.
|
[26] |
LUO Jun and WU Shandong. Adapt to adaptation: Learning personalization for cross-silo federated learning[C]. 31st International Joint Conference on Artificial Intelligence, Vienna, Austria, 2022: 2166–2173.
|
[27] |
LI Xiaoxiao, JIANG Meirui, ZHANG Xiaofei, et al. FedBN: Federated learning on non-IID features via local batch normalization[C]. The 9th International Conference on Learning Representations, 2021: 1–27.
|