Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
ZHANG Xuebo, WANG Yanmei, YANG Jiachong, SHEN Wenyan, SUN Haixin. Range-Doppler Imaging Algorithm for Multireceiver Synthetic Aperture Sonar[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2104-2110. doi: 10.11999/JEIT231160
Citation: ZHANG Xuebo, WANG Yanmei, YANG Jiachong, SHEN Wenyan, SUN Haixin. Range-Doppler Imaging Algorithm for Multireceiver Synthetic Aperture Sonar[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2104-2110. doi: 10.11999/JEIT231160

Range-Doppler Imaging Algorithm for Multireceiver Synthetic Aperture Sonar

doi: 10.11999/JEIT231160
Funds:  The National Natural Science Foundation of China (61971362, 62271426), The Natural Science Foundation of Fujian Province (2020J01003)
  • Received Date: 2023-10-25
  • Rev Recd Date: 2024-01-25
  • Available Online: 2024-02-29
  • Publish Date: 2024-05-30
  • Traditional multireceiver Synthetic Aperture Sonar (SAS) imaging algorithms based on Phase Center Approximation (PCA) neglect the spatial variance of approximation error in the azimuth dimension. The distortion would be introduced in the focused results of distributed. To solve this problem, a two-way slant range considering the azimuth variance of approximation error is deduced based on the geometry models of transmitter/receiver bistatic sampling and PCA sampling. The system function in the 2D frequency domain is further decomposed into transmitter/receiver bistatic deformation term and quasi monostatic term. Based on that, the complex multiplication and interpolation are adopted to compensate the bistatic deformation term. Then, the range-Doppler imaging algorithm is used to focus the targets. Compared to traditional methods, much smaller appropriation error across the whole mapping swath is obtained by using the proposed method. Besides, the position deviation in the azimuth dimension is not introduced by the proposed method. The imaging result which is identical to practical target position can be obtained.
  • loading
  • [1]
    THOMAS B and HUNTER A. Coherence-induced bias reduction in synthetic aperture sonar along-track micronavigation[J]. IEEE Journal of Oceanic Engineering, 2022, 47(1): 162–178. doi: 10.1109/JOE.2021.3103264.
    [2]
    YANG Peixuan. An imaging algorithm for high-resolution imaging sonar system[J]. Multimedia Tools and Applications, 2023. doi: 10.1007/s11042-023-16757-0.
    [3]
    PATE D J, COOK D A, and DONNELL B N O. Estimation of synthetic aperture resolution by measuring point scatterer responses[J]. IEEE Journal of Oceanic Engineering, 2022, 47(2): 457–471. doi: 10.1109/JOE.2021.3128414.
    [4]
    GERG I D and COTNER C F. A perceptual metric prior on deep latent space improves out-of-distribution synthetic aperture sonar image classification[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 6576–6579. doi: 10.1109/IGARSS52108.2023.10283358.
    [5]
    WANG Meng and HUANG Pan. A multireceiver SAS imaging algorithm and optimization[J]. IEEE Access, 2023, 11: 75112–75120. doi: 10.1109/ACCESS.2023.3297138.
    [6]
    WILLIAMS D P. On the use of tiny convolutional neural networks for human-expert-level classification performance in sonar imagery[J]. IEEE Journal of Oceanic Engineering, 2021, 46(1): 236–260. doi: 10.1109/JOE.2019.2963041.
    [7]
    NADIMI N, JAVIDAN R, and LAYEGHI K. Efficient detection of underwater natural gas pipeline leak based on synthetic aperture sonar (SAS) systems[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1273. doi: 10.3390/jmse9111273.
    [8]
    CHOI H M, YANG H S, and SEONG W J. Compressive underwater sonar imaging with synthetic aperture processing[J]. Remote Sensing, 2021, 13(10): 1924. doi: 10.3390/rs13101924.
    [9]
    杨磊, 王腾腾, 陈英杰, 等. 低秩矩阵补全高分辨SAR成像特征重建[J]. 电子与信息学报, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.

    YANG Lei, WANG Tengteng, CHEN Yingjie, et al. Feature Reconstruction of high resolution SAR imagery based on low rank matrix completion[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2965–2974. doi: 10.11999/JEIT220992.
    [10]
    别博文, 刘江, 孙光才, 等. 基于奇异值分解的低轨星载双基调频连续波SAR成像方法[J]. 电子与信息学报, 2023, 45(7): 2502–2510. doi: 10.11999/JEIT220757.

    BIE Bowen, LIU Jiang, SUN Guangcai, et al. Low-orbit bistatic frequency modulated continuous wave SAR imaging method based on singular value decomposition[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2502–2510. doi: 10.11999/JEIT220757.
    [11]
    闵林, 刘向前, 郝晓龙, 等. 基于低秩汉克尔矩阵重构技术的星载间断调频连续波SAR成像方法[J]. 电子与信息学报, 2023, 45(4): 1285–1292. doi: 10.11999/JEIT220239.

    MIN Lin, LIU Xiangqian, HAO Xiaolong, et al. Spaceborne interrupted frequency modulate continuous wave SAR imaging based on low-rank Hankel matrix reconstruction technique[J]. Journal of Electronics & Information Technology, 2023, 45(4): 1285–1292. doi: 10.11999/JEIT220239.
    [12]
    GOUGH P T, HAYES M P, and WILKINSON D R. An efficient image reconstruction algorithm for a multiple hydrophone array synthetic aperture sonar[C]. The 5th European Conference on Underwater Acoustics, Lyon, France, 2000: 395–400.
    [13]
    BONIFANT W W, RICHARDS M A, and MCCLELLAN J H. Interferometric height estimation of the seafloor via synthetic aperture sonar in the presence of motion errors[J]. IEE Proceedings - Radar, Sonar and Navigation, 2000, 147(6): 322–330. doi: 10.1049/ip-rsn:20000618.
    [14]
    GOUGH P T and HAYES M P. Fast Fourier techniques for SAS imagery[C]. The Europe Oceans 2005, Brest, France, 2005: 563–568. doi: 10.1109/OCEANSE.2005.1511776.
    [15]
    CALLOW H J, HAYES M P, and GOUGH P T. Motion-compensation improvement for widebeam, multiple-receiver SAS systems[J]. IEEE Journal of Oceanic Engineering, 2009, 34(3): 262–268. doi: 10.1109/JOE.2009.2014659.
    [16]
    HUANG Pan and YANG Peixuan. Synthetic aperture imagery for high-resolution imaging sonar[J]. Frontiers in Marine Science, 2022, 9: 1049761. doi: 10.3389/fmars.2022.1049761.
    [17]
    ZHANG Xuebo, CHEN Xiaohui, and QU Wu. Influence of the stop-and-hop assumption on synthetic aperture sonar imagery[C]. The IEEE 17th International Conference on Communication Technology (ICCT), Chengdu, China, 2017: 1601–1607. doi: 10.1109/ICCT.2017.8359901.
    [18]
    ZHANG Xuebo, WU Haoran, SUN Haixin, et al. Multireceiver SAS imagery based on monostatic conversion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10835–10853. doi: 10.1109/JSTARS.2021.3121405.
    [19]
    ZHANG Xuebo and YANG Peixuan. Back projection algorithm for multi-receiver synthetic aperture sonar based on two interpolators[J]. Journal of Marine Science and Engineering, 2022, 10(6): 718. doi: 10.3390/jmse10060718.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (293) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return