Citation: | ZHU Youwen, WANG Ke, ZHOU Yuqian. A Multi-party Vertically Partitioned Data Synthesis Mechanism with Personalized Differential Privacy[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2159-2176. doi: 10.11999/JEIT231158 |
[1] |
唐朋. 满足差分隐私的多方数据发布技术研究[D]. [博士论文], 北京邮电大学, 2019.
TANG Peng. Research on differentially private multi-party data publishing[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2019.
|
[2] |
DWORK C. Differential privacy[C]. 33rd International Colloquium on Automata, Languages and Programming, Venice, Italy, 2006: 1–12. doi: 10.1007/11787006_1.
|
[3] |
ZHANG Jun, CORMODE G, PROCOPIUC C M, et al. PrivBayes: Private data release via Bayesian networks[J]. ACM Transactions on Database Systems, 2017, 42(4): 25. doi: 10.1145/3134428.
|
[4] |
CHEN Rui, XIAO Qian, ZHANG Yu, et al. Differentially private high-dimensional data publication via sampling-based inference[C]. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 2015: 129–138. doi: 10.1145/2783258.2783379.
|
[5] |
CAI Kuntai, LEI Xiaoyu, WEI Jianxin, et al. Data synthesis via differentially private Markov random fields[J]. Proceedings of the VLDB Endowment, 2021, 14(11): 2190–2202. doi: 10.14778/3476249.3476272.
|
[6] |
ZHANG Zhikun, WANG Tianhao, LI Ninghui, et al. PrivSyn: Differentially private data synthesis[C]. 30th USENIX Security Symposium, Berkeley, USA, 2021: 929–946.
|
[7] |
CHENG Wenqing, WEN Ruxue, HUANG Haojun, et al. OPTDP: Towards optimal personalized trajectory differential privacy for trajectory data publishing[J]. Neurocomputing, 2022, 472: 201–211. doi: 10.1016/j.neucom.2021.04.137.
|
[8] |
张星, 张兴, 王晴阳. DP-IMKP: 满足个性化差分隐私的数据发布保护方法[J]. 计算机工程与应用, 2023, 59(10): 288–298. doi: 10.3778/j.issn.1002-8331.2201-0457.
ZHANG Xing, ZHANG Xing, and WANG Qingyang. DP-IMKP: Data publishing protection method for personalized differential privacy[J]. Computer Engineering and Applications, 2023, 59(10): 288–298. doi: 10.3778/j.issn.1002-8331.2201-0457.
|
[9] |
ZHU Hui, YIN Fan, PENG Shuangrong, et al. Differentially private hierarchical tree with high efficiency[J]. Computers & Security, 2022, 118: 102727. doi: 10.1016/j.cose.2022.102727.
|
[10] |
ALHADIDI D, MOHAMMED N, FUNG B C M, et al. Secure distributed framework for achieving ε-differential privacy[C]. 12th International Symposium on Privacy Enhancing Technologies, Vigo, Spain, 2012: 120–139. doi: 10.1007/978-3-642-31680-7_7.
|
[11] |
CHENG Xiang, TANG Peng, SU Sen, et al. Multi-party high-dimensional data publishing under differential privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(8): 1557–1571. doi: 10.1109/TKDE.2019.2906610.
|
[12] |
GU Zhen, ZHANG Kejia, and ZHANG Guoyin. Multiparty data publishing via blockchain and differential privacy[J]. Security and Communication Networks, 2022, 2022: 5612794. doi: 10.1155/2022/5612794.
|
[13] |
TANG Peng, CHEN Rui, SU Sen, et al. Multi-party sequential data publishing under differential privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(9): 9562–9577. doi: 10.1109/TKDE.2023.3241661.
|
[14] |
MOHAMMED N, ALHADIDI D, FUNG B C M, et al. Secure two-party differentially private data release for vertically partitioned data[J]. IEEE Transactions on Dependable and Secure Computing, 2014, 11(1): 59–71. doi: 10.1109/TDSC.2013.22.
|
[15] |
TANG Peng, CHENG Xiang, SU Sen, et al. Differentially private publication of vertically partitioned data[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(2): 780–795. doi: 10.1109/TDSC.2019.2905237.
|
[16] |
张小玉. 基于差分隐私的异构多属性数据发布方法研究[D]. [硕士论文], 南京航空航天大学, 2022.
ZHANG Xiaoyu. Research on heterogeneous multi-attribute data publishing method based on differential privacy[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2022.
|
[17] |
WANG Rong, FUNG B C M, ZHU Yan, et al. Differentially private data publishing for arbitrarily partitioned data[J]. Information Sciences, 2021, 553: 247–265. doi: 10.1016/j.ins.2020.10.051.
|
[18] |
BUN M and STEINKE T. Concentrated differential privacy: Simplifications, extensions, and lower bounds[C]. 14th International Conference on Theory of Cryptography, Beijing, China, 2016: 635–658. doi: 10.1007/978-3-662-53641-4_24.
|
[19] |
JORGENSEN Z, YU Ting, and CORMODE G. Conservative or liberal? Personalized differential privacy[C]. 2015 IEEE 31st International Conference on Data Engineering, Seoul, Korea (South), 2015: 1023–1034. doi: 10.1109/ICDE.2015.7113353.
|
[20] |
RASTOGI V and NATH S. Differentially private aggregation of distributed time-series with transformation and encryption[C]. Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, Indianapolis, USA, 2010: 735–746. doi: 10.1145/1807167.1807247.
|
[21] |
FOUQUE P A, POUPARD G, and STERN J. Sharing decryption in the context of voting or lotteries[C]. 4th International Conference on Financial Cryptography, Anguilla, British West Indies, 2001: 90–104. doi: 10.1007/3-540-45472-1_7.
|
[22] |
GOETHALS B, LAUR S, LIPMAA H, et al. On private scalar product computation for privacy-preserving data mining[C]. 7th International Conference on Information Security and Cryptology, Seoul, Korea (South), 2005: 104–120. doi: 10.1007/11496618_9.
|
[23] |
UCI machine learning repository[EB/OL]. http://archive.ics.uci.edu/ml/datasets.html.
|
[24] |
EB/OL]. http://personality-testing.info/_rawdata/.
|
[25] |
TSYBAKOV A B. Introduction to Nonparametric Estimation[M]. New York: Springer, 2009.
|