Advanced Search
Volume 46 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
CHEN Hui, ZHANG Dingding, LIAN Feng, HAN Chongzhao. Student’s t Inverse Wishart Smoothing Algorithm for Extended Target Tracking[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3353-3362. doi: 10.11999/JEIT231145
Citation: CHEN Hui, ZHANG Dingding, LIAN Feng, HAN Chongzhao. Student’s t Inverse Wishart Smoothing Algorithm for Extended Target Tracking[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3353-3362. doi: 10.11999/JEIT231145

Student’s t Inverse Wishart Smoothing Algorithm for Extended Target Tracking

doi: 10.11999/JEIT231145 cstr: 32379.14.JEIT231145
Funds:  The National Natural Science Foundation of China (62163023, 62366031, 62363023, 61873116), Gansu Province Education Department Industrial Support Project (2021CYZC-02), The Special Fund Project for Civil-Military Integration Development of Gansu Province in 2023, The Key Talent Project of Gansu Province in 2024
  • Received Date: 2023-10-24
  • Rev Recd Date: 2024-01-24
  • Available Online: 2024-02-26
  • Publish Date: 2024-08-10
  • Elements such as pulse interference and outlier measurement information usually lead to abnormal heavy-tailed noise, which sharply reduces the performance of the Extended Target Tracking (ETT) estimator based on the Gaussian hypothesis. To address this problem, a Student’s t Inverse Wishart Smoothing (StIWS) algorithm based on the Random Matrix Model (RMM) is proposed. Firstly, the kinematic state of the target, process noise and measurement noise are modeled as a Student’s t distribution to characterize the effect of anomalous noise on the probability distribution of extended target, and the extended state of target is modeled as a random matrix which obeys inverse Wishart distribution. Then, in a Student’s t bayesian smoothing frame, the StIWS algorithm is derived in detail, which can effectively estimate target state in the process of the dynamic evolution of multiple characteristics of extended target. Finally, the effectiveness of the proposed algorithm is verified by the simulation experiment and the engineering experiment of extended target tracking.
  • loading
  • [1]
    WANG Yi, CHEN Xin, GONG Chao, et al. Non-ellipsoidal infrared group/extended target tracking based on Poisson multi-Bernoulli mixture filter and B-spline[J]. Remote Sensing, 2023, 15(3): 606. doi: 10.3390/rs15030606.
    [2]
    GRANSTROM K, BAUM M, and REUTER S. Extended object tracking: Introduction, overview, and applications[J]. Journal of Advances in Information Fusion, 2017, 12(2): 139–174.
    [3]
    陈辉, 曾文爱, 连峰, 等. 水平集高斯过程的非星凸形扩展目标跟踪算法[J]. 电子与信息学报, 2023, 45(10): 3786–3795. doi: 10.11999/JEIT220997.

    CHEN Hui, ZENG Wen’ai, LIAN Feng, et al. Non-star-convex extended target tracking algorithm for level-set gaussian process[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3786–3795. doi: 10.11999/JEIT220997.
    [4]
    LI Qinlei, SONG Liping, and ZHANG Yongquan. Multiple extended target tracking by truncated JPDA in a clutter environment[J]. IET Signal Processing, 2021, 15(3): 207–219. doi: 10.1049/sil2.12024.
    [5]
    ZHANG Desheng, LI Wujun, YANG Shixing, et al. Multi-frame track-before-detect for scalable extended target tracking[C]. 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 2022: 1–8. doi: 10.23919/FUSION49751.2022.9841326.
    [6]
    GRANSTRÖM K, FATEMI M, and SVENSSON L. Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 208–225. doi: 10.1109/TAES.2019.2920220.
    [7]
    LI Guchong, LI Gang, and HE You. Distributed GGIW-CPHD-based extended target tracking over a sensor network[J]. IEEE Signal Processing Letters, 2022, 29: 842–846. doi: 10.1109/LSP.2022.3158589.
    [8]
    MEMON S A, KIM W G, PARK M S, et al. Rauch-Tung-Striebel smoothing linear multi-target tracking in clutter[J]. IEEE Access, 2022, 10: 3007–3016. doi: 10.1109/ACCESS.2021.3134987.
    [9]
    GRANSTRÖM K and BRAMSTÅNG J. Bayesian smoothing for the extended object random matrix model[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3732–3742. doi: 10.1109/TSP.2019.2920471.
    [10]
    SÄRKKÄ S. Bayesian Filtering and Smoothing[M]. Cambridge: Cambridge University Press, 2013: 134–164. doi: 10.1017/CBO9781139344203.
    [11]
    ZHANG Qichun and ZHOU Yuyang. Recent advances in non-Gaussian stochastic systems control theory and its applications[J]. International Journal of Network Dynamics and Intelligence, 2022, 1(1): 111–119. doi: 10.53941/ijndi0101010.
    [12]
    WU Hao, CHEN Shuxin, YANG Binfeng, et al. Robust derivative-free cubature Kalman filter for bearings-only tracking[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(8): 1865–1870. doi: 10.2514/1.G001686.
    [13]
    HUANG Yulong, ZHANG Yonggang, LI Ning, et al. A novel robust Student's t-based Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1545–1554. doi: 10.1109/TAES.2017.2651684.
    [14]
    XU Dingjie, SHEN Chen, and SHEN Feng. A robust particle filtering algorithm with non-Gaussian measurement noise using student-t distribution[J]. IEEE Signal Processing Letters, 2014, 21(1): 30–34. doi: 10.1109/LSP.2013.2289975.
    [15]
    KARLGAARD C D. Nonlinear regression Huber-Kalman filtering and fixed-interval smoothing[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(2): 322–330. doi: 10.2514/1.G000799.
    [16]
    WANG Hongwei, LI Hongbin, ZHANG Wei, et al. Derivative-free Huber-Kalman smoothing based on alternating minimization[J]. Signal Processing, 2019, 163: 115–122. doi: 10.1016/j.sigpro.2019.05.011.
    [17]
    WANG Guoqing, ZHANG Yonggang, and WANG Xiaodong. Maximum correntropy Rauch–Tung–Striebel smoother for nonlinear and non-Gaussian systems[J]. IEEE Transactions on Automatic Control, 2021, 66(3): 1270–1277. doi: 10.1109/TAC.2020.2997315.
    [18]
    HE Jiacheng, WANG Hongwei, WANG Gang, et al. Minimum error entropy Rauch–Tung–Striebel smoother[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 8901–8914. doi: 10.1109/TAES.2023.3312057.
    [19]
    ARAVKIN A Y, BELL B M, BURKE J V, et al. An 1-laplace robust Kalman smoother[J]. IEEE Transactions on Automatic Control, 2011, 56(12): 2898–2911. doi: 10.1109/TAC.2011.2141430.
    [20]
    HUANG Yulong, ZHANG Yonggang, LI Ning, et al. A robust Student's t based cubature filter[C]. 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 2016: 9–16.
    [21]
    HUANG Yulong, ZHANG Yonggang, LI Ning, et al. Robust student’s t based nonlinear filter and smoother[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2586–2596. doi: 10.1109/TAES.2016.150722.
    [22]
    WANG Jian, ZHANG Tao, JIN Bonan, et al. Student’s t-based robust Kalman filter for a SINS/USBL integration navigation strategy[J]. IEEE Sensors Journal, 2020, 20(10): 5540–5553. doi: 10.1109/JSEN.2020.2970766.
    [23]
    HUANG Yulong, ZHANG Yonggang, ZHAO Yuxin, et al. Robust Rauch-Tung-Striebel smoothing framework for heavy-tailed and/or skew noises[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 415–441. doi: 10.1109/TAES.2019.2914520.
    [24]
    ROTH M, ARDESHIRI T, ÖZKAN E, et al. Robust Bayesian filtering and smoothing using student's t distribution[EB/OL].https://arxiv.org/abs/1703.02428, 2017.
    [25]
    KARTAL S E. Variational smoothing for extended target tracking with random matrices[D]. [Master dissertation], Middle East Technical University, 2022.
    [26]
    BAUM M and HANEBECK U D. Extended object tracking with random hypersurface models[J]. IEEE Transactions on Aerospace and Electronic systems, 2014, 50(1): 149–159. doi: 10.1109/TAES.2013.120107.
    [27]
    WAHLSTRÖM N and ÖZKAN E. Extended target tracking using Gaussian processes[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4165–4178. doi: 10.1109/TSP.2015.2424194.
    [28]
    ZEA A, FAION F, BAUM M, et al. Level-set random hypersurface models for tracking nonconvex extended objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2990–3007. doi: 10.1109/TAES.2016.130704.
    [29]
    KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi: 10.1109/TAES.2008.4655362.
    [30]
    FELDMANN M, FRÄNKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi: 10.1109/TSP.2010.2101064.
    [31]
    LAN Jian and LI X R. Extended-object or group-target tracking using random matrix with nonlinear measurements[J]. IEEE Transactions on Signal Processing, 2019, 67(19): 5130–5142. doi: 10.1109/TSP.2019.2935866.
    [32]
    陈辉, 王莉, 韩崇昭. 基于随机矩阵建模的Student’s t逆Wishart滤波器[J]. 控制理论与应用, 2022, 39(6): 1088–1097. doi: 10.7641/CTA.2022.11108.

    CHEN Hui, WANG Li, and HAN Chongzhao. Student’s t inverse Wishart filter based on random matrix modeling[J]. Control Theory & Applications, 2022, 39(6): 1088–1097. doi: 10.7641/CTA.2022.11108.
    [33]
    KOTZ S and NADARAJAH S. Multivariate t-Distributions and Their Applications[M]. Cambridge: Cambridge University Press, 2004: 4–68. doi: 10.1017/CBO9780511550683.
    [34]
    ROTH M, ÖZKAN E, and GUSTAFSSON F. A Student's t filter for heavy tailed process and measurement noise[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 5770–5774. doi: 10.1109/ICASSP.2013.6638770.
    [35]
    YANG Shishan, BAUM M, and GRANSTRÖM K. Metrics for performance evaluation of elliptic extended object tracking methods[C]. 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, 2016: 523–528. doi: 10.1109/MFI.2016.7849541.
    [36]
    GIVENS C R and SHORTT R M. A class of Wasserstein metrics for probability distributions[J]. Michigan Mathematical Journal, 1984, 31(2): 231–240. doi: 10.1307/mmj/1029003026.
    [37]
    HARRIS C and STEPHENS M. A combined corner and edge detector[C]. Alvey Vision Conference, Manchester, UK, 1988: 23.1–23.6. doi: 10.5244/C.2.23.
    [38]
    CHEN Shuhan, ZHONG Shengwei, XUE Bai, et al. Iterative scale-invariant feature transform for remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3244–3265. doi: 10.1109/TGRS.2020.3008609.
    [39]
    TUNCER B and ÖZKAN E. Random matrix based extended target tracking with orientation: A new model and inference[J]. IEEE Transactions on Signal Processing, 2021, 69: 1910–1923. doi: 10.1109/TSP.2021.3065136.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (179) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return