Citation: | MIAO Meiyuan, TIAN Feng, WANG Lin, DAI Zhou. Survey on Optimised Design of Robust Chaotic Transmission Systems for Impulsive Noise under Power Line Communication Channels[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1761-1773. doi: 10.11999/JEIT231142 |
[1] |
IYIOLA A O, FAMILUA A D, SWART T G, et al. Modeling of burst impulse noise errors in an in-house M-QAM-based power line communications channel using the Fritchman–Markov model[J]. Sensors, 2023, 23(15): 6659. doi: 10.3390/s23156659.
|
[2] |
DA SILVA COSTA L G, CANTARINO W M, CAMPONOGARA Â, et al. A notch filter-based coupling circuit for UNB and NB PLC systems[J]. Sensors, 2022, 22(24): 9722. doi: 10.3390/s22249722.
|
[3] |
WANG Wenyuan and DOGANCAY K. Convergence issues in sequential partial-update LMS for cyclostationary white Gaussian input signals[J]. IEEE Signal Processing Letters, 2021, 28: 967–971. doi: 10.1109/LSP.2021.3074089.
|
[4] |
AGRAWAL N and SHARMA P K. Capacity analysis of a NB-PLC system with background and impulsive noises[C]. 2017 International Conference on Computer, Communications and Electronics, Jaipur, India, 2017: 118–123. doi: 10.1109/COMPTELIX.2017.8003949.
|
[5] |
CORTÉS J A, CAÑETE F J, and DÍEZ L. Channel estimation for OFDM-based indoor broadband power line communication systems[J]. Journal of Communications and Networks, 2023, 25(2): 151–166. doi: 10.23919/JCN.2022.000056.
|
[6] |
SPAULDING A and MIDDLETON D. Optimum reception in an impulsive interference environment-Part I: Coherent detection[J]. IEEE Transactions on Communications, 1977, 25(9): 910–923. doi: 10.1109/TCOM.1977.1093943.
|
[7] |
AGRAWAL N, SHARMA P K, and TSIFTSIS T A. Multihop DF relaying in NB-PLC system over Rayleigh fading and Bernoulli–Laplacian noise[J]. IEEE Systems Journal, 2019, 13(1): 357–364. doi: 10.1109/JSYST.2018.2870204.
|
[8] |
MIDDLETON D. Non-Gaussian noise models in signal processing for telecommunications: New methods an results for class A and class B noise models[J]. IEEE Transactions on Information Theory, 1999, 45(4): 1129–1149. doi: 10.1109/18.761256.
|
[9] |
KATAYAMA M, YAMAZATO T, and OKADA H. A mathematical model of noise in narrowband power line communication systems[J]. IEEE Journal on Selected areas in Communications, 2006, 24(7): 1267–1276. doi: 10.1109/JSAC.2006.874408.
|
[10] |
LIN Jing, NASSAR M, and EVANS B L. Impulsive noise mitigation in powerline communications using sparse Bayesian learning[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(7): 1172–1183. doi: 10.1109/JSAC.2013.130702.
|
[11] |
NIKITIN A V, SCUTTI D, NATARAJAN B, et al. Blind adaptive analog nonlinear filters for noise mitigation in powerline communication systems[C]. 2015 IEEE International Symposium on Power Line Communications and its Applications, Austin, USA, 2015: 1–6. doi: 10.1109/ISPLC.2015.7147580.
|
[12] |
NASSAR M, GULATI K, MORTAZAVI Y, et al. Statistical modeling of asynchronous impulsive noise in powerline communication networks[C]. 2011 IEEE Global Telecommunications Conference, Houston, USA, 2011: 1–6. doi: 10.1109/GLOCOM.2011.6134477.
|
[13] |
PIGHI R, FRANCESCHINI M, FERRARI G, et al. Fundamental performance limits of communications systems impaired by impulse noise[J]. IEEE Transactions on Communications, 2009, 57(1): 171–182. doi: 10.1109/TCOMM.2009.0901.060440.
|
[14] |
HELSTROM C W. Detectability of signals in Laplace noise[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 190–196. doi: 10.1109/7.18680.
|
[15] |
OMRI A, FERNANDEZ J H, and DI PIETRO R. Subcarrier-index modulation for OFDM-based PLC systems[C]. The 2023 IEEE Symposium on Computers and Communications, Gammarth, Tunisia, 2023: 649–655. doi: 10.1109/ISCC58397.2023.10217844.
|
[16] |
OMRI A, FERNANDEZ J H, and DI PIETRO R. Extending device noise measurement capacity for OFDM-based PLC systems: Design, implementation, and on-field validation[J]. Computer Networks, 2023, 237: 110038. doi: 10.1016/j.comnet.2023.110038.
|
[17] |
FERNANDEZ J H, LACASA L, OMRI A, et al. Ergodic capacity analysis of OFDM-based NB-PLC systems[C]. The 2022 24th International Conference on Advanced Communication Technology, PyeongChang, South Korea, 2022: 399–405. doi: 10.23919/ICACT53585.2022.9728888.
|
[18] |
ALAM S, SELIM B, and KADDOUM G. Analysis and comparison of several mitigation techniques for Middleton class-A noise[C]. 2019 IEEE Latin-American Conference on Communications, Salvador, Brazil, 2019: 1–6. doi: 10.1109/LATINCOM48065.2019.8938020.
|
[19] |
YANG Ping, GUAN Yongliang, LIU Xiaobei, et al. An improved hybrid turbo equalizer for single carrier transmission with impulsive noise and ISI[J]. IEEE Transactions on Vehicular Technology, 2017, 66(11): 9852–9861. doi: 10.1109/TVT.2017.2727322.
|
[20] |
KADDOUM G and TADAYON N. Differential chaos shift keying: A robust modulation scheme for power-line communications[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2017, 64(1): 31–35. doi: 10.1109/TCSII.2016.2546901.
|
[21] |
CAI Xiangming, XU Weikai, WANG Lin, et al. Joint energy and correlation detection assisted non-coherent OFDM-DCSK system for underwater acoustic communications[J]. IEEE Transactions on Communications, 2022, 70(6): 3742–3759. doi: 10.1109/TCOMM.2022.3169227.
|
[22] |
ZHANG Haotian, ZHANG Lin, JIANG Yuan, et al. Reliable and secure deep learning-based OFDM-DCSK transceiver design without delivery of reference chaotic sequences[J]. IEEE Transactions on Vehicular Technology, 2022, 71(8): 8059–8074. doi: 10.1109/TVT.2022.3175968.
|
[23] |
KADDOUM G, SOUJERI E, ARCILA C, et al. I-DCSK: An improved noncoherent communication system architecture[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2015, 62(9): 901–905. doi: 10.1109/TCSII.2015.2435831.
|
[24] |
YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: A simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2014, 61(12): 967–971. doi: 10.1109/TCSII.2014.2356914.
|
[25] |
WANG Bingrui, CHEN Haoyu, XIE Zhaopeng, et al. Design of permutation index DCSK with noise reduction for short-range IoT communications[J]. IEEE Access, 2023, 10: 102332–102339. doi: 10.1109/ACCESS.2023.3317180.
|
[26] |
TAO Yiwei, FANG Yi, CHEN Pingping, et al. Matrix reconstruction algorithm-assisted multi-carrier DCSK scheme: An effective solution for frequency-selective fading channel[J]. IEEE Wireless Communications Letters, 2023, 12(11): 1941–1945. doi: 10.1109/LWC.2023.3300353.
|
[27] |
MIAO Meiyuan, BEN NAILA C, OKADA H, et al. Design and analysis of a multi-rate multiple-access differential chaos shift keying system[J]. IEICE Transactions on Communications, 2023, E106.B(10): 873–880. doi: 10.1587/transcom.2023EBP3005.
|
[28] |
CAI Xiangming, XU Weikai, WANG Lin, et al. Design and performance analysis of a robust multi-carrier M-ary DCSK system: A noise suppression perspective[J]. IEEE Transactions on Communications, 2022, 70(3): 1623–1637. doi: 10.1109/TCOMM.2022.3144276.
|
[29] |
TAO Yiwei, FANG Yi, MA Huan, et al. Multi-carrier DCSK with hybrid index modulation: A new perspective on frequency-index-aided chaotic communication[J]. IEEE Transactions on Communications, 2022, 70(6): 3760–3773. doi: 10.1109/TCOMM.2022.3169214.
|
[30] |
ZHANG Mengxuan, CHENG Guixian, YANG Bohan, et al. Generalized carrier index differential chaos shift keying based SWIPT with conversion noise and path loss-effect[J]. Electronics, 2022, 11(15): 2406. doi: 10.3390/electronics11152406.
|
[31] |
FANG Yi, ZHUO Junming, MA Huan, et al. Design and analysis of a new index-modulation-aided DCSK system with frequency-and-time resources[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7411–7425. doi: 10.1109/TVT.2023.3238379.
|
[32] |
LIN Zixian, XU Weikai, SUN Haixin, et al. A hybrid DCSK scheme combining cyclic shift keying and code index modulation[J]. IEEE Communications Letters, 2023, 27(9): 2303–2307. doi: 10.1109/LCOMM.2023.3294514.
|
[33] |
YAN Yufan, GUO Qin, CHEN Pingping, et al. Permutation index DCSK with spatial modulation for chaotic communications[C]. The 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 1546–1550. doi: 10.1109/ICCC56324.2022.10065663.
|
[34] |
KANG Peng, ZHU Ziqiang, LIN Zhijian, et al. Design of chaotic-based PPM-PI-DCSK modulation for wireless communications[J]. IEEE Wireless Communications Letters, 2023, 12(10): 1662–1666. doi: 10.1109/LWC.2023.3283145.
|
[35] |
LIU Zhaofeng, SO H C, LI Xiaopeng, et al. Robust and energy efficient sparse-Coded OFDM-DCSK system via matrix recovery[J]. IEEE Transactions on Communications, 2023, 71(8): 4839–4850. doi: 10.1109/TCOMM.2023.3279403.
|
[36] |
YAO Wenjie, WANG Sheng, ZHANG Hao, et al. Design and analysis of a noise reduction PI-DCSK system for wireless underground power pipe gallery communications[C]. The 2023 4th Information Communication Technologies Conference, Nanjing, China, 2023: 44–48. doi: 10.1109/ICTC57116.2023.10154786.
|
[37] |
ZHU Ziqiang, CHEN Pingping, LIN Zhijian, et al. DPI DCSK modulation with BCJR decoding[J]. International Journal of Bifurcation and Chaos, 2023, 33(4): 2350042. doi: 10.1142/S0218127423500426.
|
[38] |
CHEN Haoyu, CHEN Pingping, FANG Yi, et al. Parallel differential chaotic shift keying with code index modulation for wireless communication[J]. IEEE Transactions on Communications, 2022, 70(8): 5113–5127. doi: 10.1109/TCOMM.2022.3187158.
|
[39] |
MA Huan, FANG Yi, CHEN Pingping, et al. A novel differential chaos shift keying scheme with multidimensional index modulation[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 237–256. doi: 10.1109/TWC.2022.3192347.
|
[40] |
FANG Yi, TAO Yiwei, MA Huan, et al. Design of a reconfigurable intelligent surface-assisted FM-DCSK-SWIPT scheme with non-linear energy harvesting model[J]. IEEE Transactions on Communications, 2023, 71(4): 1863–1877. doi: 10.1109/TCOMM.2023.3239647.
|
[41] |
WANG Lin, CAI Guofa, and CHEN G R. Design and performance analysis of a new multiresolution M-ary differential chaos shift keying communication system[J]. IEEE Transactions on Wireless Communications, 2015, 14(9): 5197–5208. doi: 10.1109/TWC.2015.2434820.
|
[42] |
CAI Guofa, FANG Yi, HAN Guojun, et al. A square-constellation-based M-ary DCSK communication system[J]. IEEE Access, 2016, 4: 6295–6303. doi: 10.1109/ACCESS.2016.2612224.
|
[43] |
CAI Guofa, FANG Yi, and HAN Guojun. Design of an adaptive multiresolution M-ary DCSK system[J]. IEEE Communications Letters, 2017, 21(1): 60–63. doi: 10.1109/LCOMM.2016.2614682.
|
[44] |
CAI Guofa, FANG Yi, HAN Guojun, et al. A new hierarchical M-ary DCSK communication system: Design and analysis[J]. IEEE Access, 2017, 5: 17414–17424. doi: 10.1109/ACCESS.2017.2740973.
|
[45] |
苗美媛, 宋丹, 徐位凯, 等. 非平稳信道下的鲁棒数据链优化设计综述——带限环境下的混沌传输系统[J]. 电子与信息学报, 2021, 43(1): 1–12. doi: 10.11999/JEIT200311.
MIAO Meiyuan, SONG Dan, XU Weikai, et al. Survey of optimization design for robust data link over non-stationary channels-chaotic transmission systems over band-limited environments[J]. Journal of Electronics & Information Technology, 2021, 43(1): 1–12. doi: 10.11999/JEIT200311.
|
[46] |
ZEHAVI E. 8-PSK trellis codes for a Rayleigh channel[J]. IEEE Transactions on Communications, 1992, 40(5): 873–884. doi: 10.1109/26.141453.
|
[47] |
CAIRE G, TARICCO G, and BIGLIERI E. Bit-interleaved coded modulation[J]. IEEE Transactions on Information Theory, 1998, 44(3): 927–946. doi: 10.1109/18.669123.
|
[48] |
DIVSALAR D and JONES C. Protograph based low error floor LDPC coded modulation[C]. 2005 IEEE Military Communications Conference, Atlantic City, USA, 2005: 378–385. doi: 10.1109/MILCOM.2005.1605713.
|
[49] |
JIN Yi, JIANG Ming, and ZHAO Chunming. Optimized variable degree matched mapping for protograph LDPC coded modulation with 16QAM[C]. The 2010 6th International Symposium on Turbo Codes & Iterative Information Processing, Brest, France, 2010: 161–165. doi: 10.1109/ISTC.2010.5613828.
|
[50] |
HE Yanchun, WANG Lin, ZHOU Chenglong, et al. A novel trellis-coded differential chaotic modulation system[C]. 2017 Wireless Telecommunications Symposium, Chicago, USA, 2017: 1–6. doi: 10.1109/WTS.2017.7943522.
|
[51] |
CHEN Pingping, XIE Zhaopeng, FANG Yi, et al. Physical-layer network coding: An efficient technique for wireless communications[J]. IEEE Network, 2020, 34(2): 270–276. doi: 10.1109/MNET.001.1900289.
|
[52] |
VINES R M, TRISSELL H J, GALE L J, et al. Noise on residential power distribution circuits[J]. IEEE Transactions on Electromagnetic Compatibility, 1984, EMC-26(4): 161–168. doi: 10.1109/TEMC.1984.304217.
|
[53] |
CHAN M H L and DONALDSON R W. Amplitude, width, and interarrival distributions for noise impulses on intrabuilding power line communication networks[J]. IEEE Transactions on Electromagnetic Compatibility, 1989, 31(3): 320–323. doi: 10.1109/15.30920.
|
[54] |
KATAYAMA M. Introduction to robust, reliable, and high-speed power-line communication systems[J]. IEICE Transactions on Fundamentals, 2001, E84-A(12): 2958–2965.
|
[55] |
NIWA H, OONO O, KATAYAMA M, et al. A spread-spectrum system with dual processing gains designed for cyclic noise in power line communications[J]. IEICE Transactions on Fundamentals, 1997, E80-A(12): 2526–2533.
|
[56] |
KADDOUM G and SHOKRANEH F. Analog network coding for multi-user multi-carrier differential chaos shift keying communication system[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1492–1505. doi: 10.1109/TWC.2014.2367508.
|
[57] |
KADDOUM G, RICHARDSON F D, ADOUNI S, et al. Multi-user multi-carrier differential chaos shift keying communication system[C]. The 2013 9th International Wireless Communications and Mobile Computing Conference, Sardinia, Italy, 2013: 1798–1802. doi: 10.1109/IWCMC.2013.6583829.
|
[58] |
GALIAS Z and MAGGIO G M. Quadrature chaos-shift keying: Theory and performance analysis[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 2001, 48(12): 1510–1519. doi: 10.1109/TCSI.2001.972858.
|
[59] |
YANG Hua, TANG W K S, CHEN Guanrong, et al. System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2016, 63(1): 146–156. doi: 10.1109/TCSI.2015.2510622.
|
[60] |
GHOSH M. Analysis of the effect of impulse noise on multicarrier and single carrier QAM systems[J]. IEEE Transactions on Communications, 1996, 44(2): 145–147. doi: 10.1109/26.486604.
|
[61] |
FAN Tingting, XU Weikai, WANG Lin, et al. A new APSK-based M-ary differential chaos shift keying modulation system[J]. IEEE Communications Letters, 2020, 24(12): 2701–2704. doi: 10.1109/LCOMM.2020.3019105.
|
[62] |
THOMAS C, WEIDNER M, and DURRANI S. Digital amplitude-phase keying with M-ary alphabets[J]. IEEE Transactions on Communications, 1974, 22(2): 168–180. doi: 10.1109/TCOM.1974.1092165.
|
[63] |
SHAMAI S and BAR-DAVID I. The capacity of average and peak-power-limited quadrature Gaussian channels[J]. IEEE Transactions on Information Theory, 1995, 41(4): 1060–1071. doi: 10.1109/18.391243.
|
[64] |
蔡相明, 徐位凯, 王琳. 差分混沌通信研究综述: 信号设计与性能优化[J]. 电子与信息学报, 2022, 44(10): 3683–3696. doi: 10.11999/JEIT220625.
CAI Xiangming, XU Weikai, and WANG Lin. Survey of differential chaotic communications: Signal design and performance optimization[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3683–3696. doi: 10.11999/JEIT220625.
|
[65] |
KADDOUM G, SOUJERI E, and NIJSURE Y. Design of a short reference noncoherent chaos-based communication systems[J]. IEEE Transactions on Communications, 2016, 64(2): 680–689. doi: 10.1109/TCOMM.2015.2514089.
|
[66] |
LUO Ronghua, YANG Hua, MENG Chao, et al. A novel SR-DCSK-based ambient backscatter communication system[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3): 1707–1711. doi: 10.1109/TCSII.2021.3109020.
|
[67] |
HERCEG M, VRANJEŠ D, KADDOUM G, et al. Commutation code index DCSK modulation technique for high-data-rate communication systems[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 2018, 65(12): 1954–1958. doi: 10.1109/TCSII.2018.2817930.
|
[68] |
HERCEG M, KADDOUM G, VRANJEŠ D, et al. Permutation index DCSK modulation technique for secure multiuser high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 2997–3011. doi: 10.1109/TVT.2017.2774108.
|
[69] |
KADDOUM G, AHMED M F A, and NIJSURE Y. Code index modulation: A high data rate and energy efficient communication system[J]. IEEE Communications Letters, 2015, 19(2): 175–178. doi: 10.1109/LCOMM.2014.2385054.
|
[70] |
KADDOUM G, NIJSURE Y, and TRAN H. Generalized code index modulation technique for high-data-rate communication systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7000–7009. doi: 10.1109/TVT.2015.2498040.
|
[71] |
KADDOUM G and SOUJERI E. On the comparison between code-index modulation and spatial modulation techniques[C]. 2015 International Conference on Information and Communication Technology Research, Abu Dhabi, United Arab Emirates, 2015: 24–27. doi: 10.1109/ICTRC.2015.7156412.
|
[72] |
XU Weikai, HUANG Tingting, and WANG Lin. Code-shifted differential chaos shift keying with code index modulation for high data rate transmission[J]. IEEE Transactions on Communications, 2017, 65(10): 4285–4294. doi: 10.1109/TCOMM.2017.2725261.
|
[73] |
ZHENG Mingyang, HUANG Tingting, WANG Lin, et al. Performance analysis of M-ary DCSK system over narrow band power-line communications[C]. The 23rd Asia-Pacific Conference on Communications, Perth, Australia, 2017: 1–6. doi: 10.23919/APCC.2017.8304008.
|
[74] |
CHENG LIN and FERREIRA H C. Time-diversity permutation coding scheme for narrow-band power-line channels[C]. 2012 IEEE International Symposium on Power Line Communications and Its Applications, Beijing, China, 2012: 120–125. doi: 10.1109/ISPLC.2012.6201335.
|
[75] |
MIAO Meiyuan, WANG Lin, CHEN Guanrong, et al. Design and analysis of replica piecewise M-ary DCSK scheme for power line communications with asynchronous impulsive noise[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2020, 67(12): 5443–5453. doi: 10.1109/TCSI.2020.3023749.
|
[76] |
CAI Xiangming, XU Weikai, WANG Lin, et al. Design of joint position and constellation mapping assisted DCSK scheme subject to Laplacian impulsive noise[J]. IEEE Communications Letters, 2022, 26(2): 463–467. doi: 10.1109/LCOMM.2021.3128400.
|
[77] |
MIAO Meiyuan, WANG Lin, KATZ M, et al. Hybrid modulation scheme combining PPM with differential chaos shift keying modulation[J]. IEEE Wireless Communications Letters, 2019, 8(2): 340–343. doi: 10.1109/LWC.2018.2871137.
|
[78] |
ZHANG Yuyang, WANG Lin, CHEN Qiwang, et al. Optimization of constellation-based DC-BICM systems over power line channels[C]. The 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Bologna, Italy, 2018: 576–577. doi: 10.1109/PIMRC.2018.8580673.
|
[79] |
杨帆, 贾辉, 刘宝树, 等. α稳定脉冲噪声下宽带电力线通信系统性能分析[J]. 电子与信息学报, 2019, 41(6): 1374–1380. doi: 10.11999/JEIT180261.
YANG Fan, JIA Hui, LIU Baoshu, et al. Performance analysis of broadband power-line communications systems under the alpha-stable impulsive noise[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1374–1380. doi: 10.11999/JEIT180261.
|
[80] |
陶雄飞, 王跃东, 柳盼. 基于变量节点更新的LDPC码加权比特翻转译码算法[J]. 电子与信息学报, 2016, 38(3): 688–693. doi: 10.11999/JEIT150720.
TAO Xiongfei, WANG Yuedong, and LIU Pan. Weighted bit-flipping decoding algorithm for LDPC codes based on updating of variable nodes[J]. Journal of Electronics & Information Technology, 2016, 38(3): 688–693. doi: 10.11999/JEIT150720.
|
[81] |
CHEN Qiwang, WANG Lin, LYU Yibo, et al. Designing protograph-based LDPC Codes for iterative receivers on M-ary dcsk systems[J]. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2018, 65(4): 466–470. doi: 10.1109/TCSII.2017.2741062.
|
[82] |
MIAO Meiyuan, WANG Lin, and CHEN Guanrong. Performance and capacity analysis of MDCSK-BICM for impulsive noise in PLC[J]. IEEE Transactions on Power Delivery, 2022, 37(4): 3164–3175. doi: 10.1109/TPWRD.2021.3124561.
|
[83] |
洪少华, 王琳. 基于原模图LDPC码的分布式联合信源信道编码[J]. 电子与信息学报, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113.
HONG Shaohua and WANG Lin. Protograph LDPC based distributed joint source channel coding[J]. Journal of Electronics & Information Technology, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113.
|