Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
LIAO Yong, LUO Yu, JING Yahao. 6G New Time-delay Doppler Communication Paradigm: Technical Advantages, Design Challenges, Applications and Prospects of OTFS[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1827-1842. doi: 10.11999/JEIT231133
Citation: LIAO Yong, LUO Yu, JING Yahao. 6G New Time-delay Doppler Communication Paradigm: Technical Advantages, Design Challenges, Applications and Prospects of OTFS[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1827-1842. doi: 10.11999/JEIT231133

6G New Time-delay Doppler Communication Paradigm: Technical Advantages, Design Challenges, Applications and Prospects of OTFS

doi: 10.11999/JEIT231133
Funds:  Chongqing Natural Science Foundation (CSTB2023NSCQ-MSX0025)
  • Received Date: 2023-10-17
  • Rev Recd Date: 2024-02-06
  • Available Online: 2024-03-21
  • Publish Date: 2024-05-30
  • In the future communication network, the sixth generation mobile communication system technology(6G), which is widely expected, will face many challenges, including the issue of ultra-reliable communication in high-speed mobile scenarios. Orthogonal Time Frequency Space (OTFS) modulation technology overcomes the multi-path and Doppler effects of traditional communication systems in high-speed mobile environments, and provides a new possibility for realizing 6G ultra-reliable communication. This paper first introduces the basic principle, mathematical model, interference and advantage analysis of OTFS. Then, the research status of OTFS technology in synchronization, channel estimation and signal detection is summarized and analyzed. Subsequently, the application trend of OTFS is analyzed from four typical application scenarios of vehicle networking, unmanned aerial vehicle, satellite communication and marine communication. Finally, the difficulties and challenges to be overcome in future OTFS research are discussed from four aspects: reducing multi-dimensional matching filter, phase demodulation and channel estimation, hardware implementation complexity and improving the high utilization of time-frequency resources.
  • loading
  • [1]
    GUO Fengxian, YU F R, ZHANG Heli, et al. Enabling massive IoT toward 6G: A comprehensive survey[J]. IEEE Internet of Things Journal, 2021, 8(15): 11891–11915. doi: 10.1109/JIOT.2021.3063686.
    [2]
    SALH A, AUDAH L, SHAH N S M, et al. A survey on deep learning for ultra-reliable and low-latency communications challenges on 6G wireless systems[J]. IEEE Access, 2021, 9: 55098–55131. doi: 10.1109/ACCESS.2021.3069707.
    [3]
    LV Zhihan, LOU Ranran, LI Jinhua, et al. Big data analytics for 6G-enabled massive internet of things[J]. IEEE Internet of Things Journal, 2021, 8(7): 5350–5359. doi: 10.1109/JIOT.2021.3056128.
    [4]
    ALSAEDI W K, AHMADI H, KHAN Z, et al. Spectrum options and allocations for 6G: A regulatory and standardization review[J]. IEEE Open Journal of the Communications Society, 2023, 4: 1787–1812. doi: 10.1109/OJCOMS.2023.3301630.
    [5]
    BANAFAA M, SHAYEA I, DIN J, et al. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities[J]. Alexandria Engineering Journal, 2023, 64: 245–274. doi: 10.1016/j.aej.2022.08.017.
    [6]
    ABASI A K, ALOQAILY M, OUNI B, et al. A survey on securing 6G wireless communications based optimization techniques[C]. Proceedings of 2023 International Wireless Communications and Mobile Computing, Marrakesh, Morocco, 2023: 216–223. doi: 10.1109/IWCMC58020.2023.10183210.
    [7]
    CUI Huanxi, ZHANG Jun, GENG Yuhui, et al. Space-air-ground integrated network (SAGIN) for 6G: Requirements, architecture and challenges[J]. China Communications, 2022, 19(2): 90–108. doi: 10.23919/JCC.2022.02.008.
    [8]
    CHANG Luyi, ZHANG Zhe, LI Pei, et al. 6G-enabled edge AI for metaverse: Challenges, methods, and future research directions[J]. Journal of Communications and Information Networks, 2022, 7(2): 107–121. doi: 10.23919/JCIN.2022.9815195.
    [9]
    程翔, 张浩天, 杨宗辉, 等. 车联网通信感知一体化研究: 现状与发展趋势[J]. 通信学报, 2022, 43(8): 188–202. doi: 10.11959/j.issn.1000-436x.2022137.

    CHENG Xiang, ZHANG Haotian, YANG Zonghui, et al. Integrated sensing and communications for Internet of vehicles: Current status and development trend[J]. Journal on Communications, 2022, 43(8): 188–202. doi: 10.11959/j.issn.1000-436x.2022137.
    [10]
    LI Qingyu, GONG Yi, WANG Jianyu, et al. Exploring the performance of receiver algorithm in OTFS based on CNN[C]. Proceedings of 2022 IEEE International Conference on Communications Workshops, Seoul, Republic of Korea, 2022: 957–962. doi: 10.1109/ICCWorkshops53468.2022.9814529.
    [11]
    REDDY C S, PRIYA P, SEN D, et al. Spectral efficient modem design with OTFS modulation for vehicular-IoT system[J]. IEEE Internet of Things Journal, 2023, 10(3): 2444–2458. doi: 10.1109/JIOT.2022.3211531.
    [12]
    WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Orthogonal time-frequency space modulation: A promising next-generation waveform[J]. IEEE Wireless Communications, 2021, 28(4): 136–144. doi: 10.1109/MWC.001.2000408.
    [13]
    XIAO Lixia, LI Shuo, QIAN Ying, et al. An overview of OTFS for internet of things: Concepts, benefits, and challenges[J]. IEEE Internet of Things Journal, 2022, 9(10): 7596–7618. doi: 10.1109/JIOT.2021.3132606.
    [14]
    LI Mao, LIU Wei, and LEI Jing. A review on orthogonal time–frequency space modulation: State-of-art, hotspots and challenges[J]. Computer Networks, 2023, 224: 109597. doi: 10.1016/j.comnet.2023.109597.
    [15]
    ZHANG Shumin, ZHANG Yuzhi, CHANG Jiazheng, et al. DNN-based signal detection for underwater OTFS systems[C]. Proceedings of 2022 IEEE/CIC International Conference on Communications in China, Sanshui, Foshan, China, 2022: 348–352. doi: 10.1109/ICCCWorkshops55477.2022.9896695.
    [16]
    KHAN M S, KIM Y J, SULTAN Q, et al. Downlink synchronization for OTFS-based cellular systems in high doppler environments[J]. IEEE Access, 2021, 9: 73575–73589. doi: 10.1109/ACCESS.2021.3079429.
    [17]
    GAO Ziqiang, DENG Xiong, ZOU Xihua, et al. Orthogonal time frequency space modulation in wideband Doppler channel[C]. Proceedings of the 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 2022: 1–6. doi: 10.1109/IECON49645.2022.9968556.
    [18]
    TUSHA A and ARSLAN H. Low complex inter-doppler interference mitigation for OTFS systems via global receiver windowing[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7685–7698. doi: 10.1109/TVT.2023.3243577.
    [19]
    CHENNIAPPAN P, PRASANA S, DEEPA D, et al. Performance analysis of Orthogonal Time Frequency Space (OTFS) modulation technique in massive MIMO system for high-speed communication[J]. AIP Conference Proceedings, 2023, 2725(1): 060003. doi: 10.1063/5.0125238.
    [20]
    CAUS M, SHAAT M, PÉREZ-NEIRA A I, et al. Reliability oriented OTFS-based LEO satellites joint transmission scheme[C]. Proceedings of 2022 IEEE Globecom Workshops, Rio de Janeiro, Brazil, 2022: 1406–1412. doi: 10.1109/GCWkshps56602.2022.10008593.
    [21]
    RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011.
    [22]
    JIN Chenxi, BIE Zhisong, LIN Xuehong, et al. A simple two-stage equalizer for OTFS with rectangular windows[J]. IEEE Communications Letters, 2021, 25(4): 1158–1162. doi: 10.1109/LCOMM.2020.3043841.
    [23]
    尉志青, 冯志勇, 李怡恒, 等. 太赫兹通信感知一体化波形: 现状与展望[J]. 通信学报, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.

    WEI Zhiqing, FENG Zhiyong, LI Yiheng, et al. Terahertz joint communication and sensing waveform: Status and prospect[J]. Journal on Communications, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.
    [24]
    THAJ T and VITERBO E. OTFS modem SDR implementation and experimental study of receiver impairment effects[C]. Proceedings of 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8757167.
    [25]
    MOZAFFARI TAZEHKAND B, AGHDAM M R G, VAKILIAN V, et al. Novel successive interference cancellation (SIC) with low-complexity for GFDM systems[J]. IEEE Access, 2022, 10: 40063–40072. doi: 10.1109/ACCESS.2022.3167051.
    [26]
    BEMANI A, KSAIRI N, and KOUNTOURIS M. Affine frequency division multiplexing for next generation wireless communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8214–8229. doi: 10.1109/TWC.2023.3260906.
    [27]
    SINHA A K, MOHAMMED S K, RAVITEJA P, et al. OTFS based random access preamble transmission for high mobility scenarios[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15078–15094. doi: 10.1109/TVT.2020.3034130.
    [28]
    BAYAT M and FARHANG A. Time and frequency synchronization for OTFS[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2670–2674. doi: 10.1109/LWC.2022.3214002.
    [29]
    肖之长, 彭丽, 张沉思, 等. 基于导频辅助的OTFS载波同步技术[J]. 无线电通信技术, 2021, 47(3): 315–318. doi: 10.3969/j.issn.1003-3114.2021.03.010.

    XIAO Zhichang, PENG Li, ZHANG Chensi, et al. Pilot-aided OTFS carrier synchronization technology[J]. Radio Communications Technology, 2021, 47(3): 315–318. doi: 10.3969/j.issn.1003-3114.2021.03.010.
    [30]
    邢旺, 唐晓刚, 周一青, 等. 面向OTFS的时延-多普勒域信道估计方法综述[J]. 通信学报, 2022, 43(12): 188–201. doi: 10.11959/j.issn.1000-436x.2022224.

    XING Wang, TANG Xiaogang, ZHOU Yiqing, et al. Survey of channel estimation method in delay-Doppler domain for OTFS[J]. Journal on Communications, 2022, 43(12): 188–201. doi: 10.11959/j.issn.1000-436x.2022224.
    [31]
    LIAO Yong and LI Xue. Joint multi-domain channel estimation based on sparse Bayesian learning for OTFS system[J]. China Communications, 2023, 20(1): 14–23. doi: 10.23919/JCC.2023.01.002.
    [32]
    ZHAO Lei, GAO Wenjing, and GUO Wenbin. Sparse Bayesian learning of delay-Doppler channel for OTFS system[J]. IEEE Communications Letters, 2020, 24(12): 2766–2769. doi: 10.1109/LCOMM.2020.3021120.
    [33]
    WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Off-grid channel estimation with sparse Bayesian learning for OTFS systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7407–7426. doi: 10.1109/TWC.2022.3158616.
    [34]
    WANG Qianli, LIANG Yu, ZHANG Zhengquan, et al. 2D off-grid decomposition and SBL combination for OTFS channel estimation[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3084–3098. doi: 10.1109/TWC.2022.3215991.
    [35]
    ZHAO Lei, YANG J, LIU Yueliang, et al. Block sparse Bayesian learning-based channel estimation for MIMO-OTFS systems[J]. IEEE Communications Letters, 2022, 26(4): 892–896. doi: 10.1109/LCOMM.2022.3144674.
    [36]
    周硕, 周一青, 张冲, 等. ResNet使能的OTFS联合信道估计和信号检测[J]. 西安电子科技大学学报, 2023, 50(3): 19–30. doi: 10.19665/j.issn1001-2400.2023.03.002.

    ZHOU Shuo, ZHOU Yiqing, ZHANG Chong, et al. ResNet enabled joint channel estimation and signal detection for OTFS[J]. Journal of Xidian University, 2023, 50(3): 19–30. doi: 10.19665/j.issn1001-2400.2023.03.002.
    [37]
    HE Bangwei, BAI Zhiquan, MA Yuanyuan, et al. Denoising CNN based channel estimation for vehicular OTFS communication system[C]. Proceedings of the 25th International Conference on Advanced Communication Technology, Pyeongchang, Republic of Korea, 2023: 54–58. doi: 10.23919/ICACT56868.2023.10079625.
    [38]
    ZHANG Xiaoqi, YUAN Weijie, and LIU Chang. Deep residual learning for OTFS channel estimation with arbitrary noise[C]. Proceedings of 2022 IEEE/CIC International Conference on Communications in China, Sanshui, Foshan, China, 2022: 320–324. doi: 10.1109/ICCCWorkshops55477.2022.9896721.
    [39]
    ZHANG Xiaoqi, YUAN Weijie, LIU Chang, et al. Deep learning with a self-adaptive threshold for OTFS channel estimation[C]. Proceedings of 2022 International Symposium on Wireless Communication Systems, Hangzhou, China, 2022: 1–5. doi: 10.1109/ISWCS56560.2022.9940260.
    [40]
    MATTU S R and CHOCKALINGAM A. An RNN based DD channel estimator for OTFS with embedded pilots[C]. Proceedings of 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Kyoto, Japan, 2022: 457–462. doi: 10.1109/PIMRC54779.2022.9977831.
    [41]
    RAVITEJA P, PHAN K T, and HONG Yi. Embedded pilot-aided channel estimation for OTFS in delay–Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906–4917. doi: 10.1109/TVT.2019.2906357.
    [42]
    SHEN Wenqian, DAI Linglong, AN Jianping, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204–4217. doi: 10.1109/TSP.2019.2919411.
    [43]
    LI Muye, ZHANG Shun, GAO Feifei, et al. A new path division multiple access for the massive MIMO-OTFS networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 903–918. doi: 10.1109/JSAC.2020.3018826.
    [44]
    WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Transmitter and receiver window designs for orthogonal time-frequency space modulation[J]. IEEE Transactions on Communications, 2021, 69(4): 2207–2223. doi: 10.1109/TCOMM.2021.3051386.
    [45]
    QIAN Ying, XIAO Lixia, and JIANG Tao. SM-STBC aided orthogonal time frequency space modulation[C]. Proceedings of 2022 IEEE Wireless Communications and Networking Conference, Austin, USA, 2022: 2172–2177. doi: 10.1109/WCNC51071.2022.9771767.
    [46]
    PRASAD R, MURTHY C R, and RAO B D. Joint channel estimation and data detection in MIMO-OFDM systems: A sparse Bayesian learning approach[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5369–5382. doi: 10.1109/TSP.2015.2451071.
    [47]
    LI Haifeng and WEN Jinming. A new analysis for support recovery with block orthogonal matching pursuit[J]. IEEE Signal Processing Letters, 2019, 26(2): 247–251. doi: 10.1109/LSP.2018.2885919.
    [48]
    SURABHI G D and CHOCKALINGAM A. Low-complexity linear equalization for OTFS modulation[J]. IEEE Communications Letters, 2020, 24(2): 330–334. doi: 10.1109/LCOMM.2019.2956709.
    [49]
    KOLLENGODE RAMACHANDRAN M and CHOCKALINGAM A. MIMO-OTFS in high-doppler fading channels: Signal detection and channel estimation[C]. Proceedings of 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 206–212. doi: 10.1109/GLOCOM.2018.8647394.
    [50]
    ZHENG Jieheng, ZHANG Lin, LI Yan, et al. An orthogonal time frequency space modulation based differential chaos shift keying transceiver for reliable communications[C]. Proceedings of 2023 IEEE 97th Vehicular Technology Conference, Florence, Italy, 2023: 1–5. doi: 10.1109/VTC2023-Spring57618.2023.10201217.
    [51]
    梁应敞, 谭俊杰, NIYATO D. 智能无线通信技术研究概况[J]. 通信学报, 2020, 41(7): 1–17. doi: 10.11959/j.issn.1000-436x.2020145.

    LIANG Yingchang, TAN Junjie, and NIYATO D. Overview on intelligent wireless communication technology[J]. Journal on Communications, 2020, 41(7): 1–17. doi: 10.11959/j.issn.1000-436x.2020145.
    [52]
    NAIKOTI A and CHOCKALINGAM A. Low-complexity delay-Doppler symbol DNN for OTFS signal detection[C]. Proceedings of 2021 IEEE 93rd Vehicular Technology Conference, Helsinki, Finland, 2021: 1–6. doi: 10.1109/VTC2021-Spring51267.2021.9448630.
    [53]
    ABID M H, TALIN I A, and KADIR M I. Reconfigurable intelligent surface-aided orthogonal time frequency space and its deep learning-based signal detection[J]. IEEE Access, 2023, 11: 47321–47338. doi: 10.1109/ACCESS.2023.3273297.
    [54]
    CHENG Qingqing, SHI Zhenguo, YUAN Jinhong, et al. Environment-robust signal detection for OTFS systems using deep learning[C]. Proceedings of 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 47321–47338. doi: 10.1109/GLOBECOM48099.2022.10000940.
    [55]
    ENKU Y K, BAI Baoming, WAN Fei, et al. Two-dimensional convolutional neural network-based signal detection for OTFS systems[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2514–2518. doi: 10.1109/LWC.2021.3106039.
    [56]
    SINGH A, SHARMA S, DEKA K, et al. DL-based OTFS signal detection in presence of hardware impairments[J]. IEEE Wireless Communications Letters, 2023, 12(9): 1533–1537. doi: 10.1109/LWC.2023.3281790.
    [57]
    GONG Yi, LI Qingyu, MENG Fanke, et al. ViterbiNet-based signal detection for OTFS system[J]. IEEE Communications Letters, 2023, 27(3): 881–885. doi: 10.1109/LCOMM.2023.3237719.
    [58]
    ZHANG Xufan, ZHANG Shengyu, XIAO Lixia, et al. Graph neural network assisted efficient signal detection for OTFS systems[J]. IEEE Communications Letters, 2023, 27(8): 2058–2062. doi: 10.1109/LCOMM.2023.3286800.
    [59]
    LI Shuo, DING Chao, XIAO Lixia, et al. Expectation propagation aided model driven learning for OTFS signal detection[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 12407–12412. doi: 10.1109/TVT.2023.3268231.
    [60]
    LI Qingyu, GONG Yi, MENG Fanke, et al. Data-driven receiver for OTFS system with deep learning[C]. Proceedings of the 7th IEEE International Conference on Network Intelligence and Digital Content, Beijing, China, 2021: 172–176. doi: 10.1109/IC-NIDC54101.2021.9660432.
    [61]
    LI Qi, YUAN Jinhong, and LIN Hai. Iterative MMSE detection for orthogonal time frequency space modulation[C]. Proceedings of 2022 IEEE International Conference on Communications Workshops, Seoul, Republic of Korea, 2022: 1–6. doi: 10.1109/ICCWorkshops53468.2022.9814638.
    [62]
    THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276.
    [63]
    TIWARI S, DAS S S, and RANGAMGARI V. Low complexity LMMSE Receiver for OTFS[J]. IEEE Communications Letters, 2019, 23(12): 2205–2209. doi: 10.1109/LCOMM.2019.2945564.
    [64]
    XIANG Luping, LIU Yusha, YANG Lieliang, et al. Gaussian approximate message passing detection of orthogonal time frequency space modulation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10999–11004. doi: 10.1109/TVT.2021.3102673.
    [65]
    ZHANG Xufan, XIAO Lixia, LI Shuo, et al. Gaussian AMP aided model-driven learning for OTFS system[J]. IEEE Communications Letters, 2022, 26(12): 2949–2953. doi: 10.1109/LCOMM.2022.3206414.
    [66]
    HE Hengtao, WEN Chaokai, JIN Shi, et al. Model-driven deep learning for MIMO detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 1702–1715. doi: 10.1109/TSP.2020.2976585.
    [67]
    LI Hua, DONG Yuanyuan, GONG Caihong, et al. Low complexity receiver via expectation propagation for OTFS modulation[J]. IEEE Communications Letters, 2021, 25(10): 3180–3184. doi: 10.1109/LCOMM.2021.3101827.
    [68]
    IMT-2030 (6G)推进组. 6G网络架构愿景与关键技术展望白皮书[R]. IMT-2030 (6G), 2021.

    IMT-2030(6G) Promotion Group. 6G network architecture vision and key technology outlook white paper[R]. IMT-2030 (6G), 2021.
    [69]
    XU Weilin, HE Yating, ZHAI Shenghua, et al. Discussion on network communication technology of unmanned cluster[C]. Proceedings of 2022 10th International Conference on Information Systems and Computing Technology, Guilin, China, 2022: 48–52. doi: 10.1109/ISCTech58360.2022.00014.
    [70]
    CHU T M C, ZEPERNICK H J, WESTERHAGEN A, et al. Performance assessment of OTFS modulation in high Doppler airborne communication networks[J]. Mobile Networks and Applications, 2022, 27(4): 1746–1756. doi: 10.1007/s11036-022-01928-4.
    [71]
    RAVITEJA P, VITERBO E, and HONG Yi. OTFS performance on static multipath channels[J]. IEEE Wireless Communications Letters, 2019, 8(3): 745–748. doi: 10.1109/LWC.2018.2890643.
    [72]
    ALBANESE A, SCIANCALEPORE V, and COSTA-PÉREZ X. First responders got wings: UAVs to the rescue of localization operations in beyond 5G systems[J]. IEEE Communications Magazine, 2021, 59(11): 28–34. doi: 10.1109/MCOM.101.2100273.
    [73]
    VAEZI M, AZARI A, KHOSRAVIRAD S R, et al. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1117–1174. doi: 10.1109/COMST.2022.3151028.
    [74]
    ALSABAH M, NASER M A, MAHMMOD B M, et al. 6G wireless communications networks: A comprehensive survey[J]. IEEE Access, 2021, 9: 148191–148243. doi: 10.1109/ACCESS.2021.3124812.
    [75]
    WANG Jiawei, JIANG Chunxiao, and KUANG Linling. High-mobility satellite-UAV communications: Challenges, solutions, and future research trends[J]. IEEE Communications Magazine, 2022, 60(5): 38–43. doi: 10.1109/MCOM.001.2100850.
    [76]
    VAN WALREE P A. Propagation and scattering effects in underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 614–631. doi: 10.1109/JOE.2013.2278913.
    [77]
    JOSHI M, PUNJABI G, SAINATH B, et al. Comparative performance investigation of MIMO-OTFS and MIMO-OFDM using deep neural network modeling[C]. Proceedings of 2021 IEEE 18th India Council International Conference, Guwahati, India, 2021: 1–6. doi: 10.1109/INDICON52576.2021.9691490.
    [78]
    QU Huiyang, LIU Guanghui, ZHANG Lei, et al. Low-dimensional subspace estimation of continuous-Doppler-spread channel in OTFS systems[J]. IEEE Transactions on Communications, 2021, 69(7): 4717–4731. doi: 10.1109/TCOMM.2021.3072744.
    [79]
    XIAO Zhenyu, YANG Junyi, MAO Tianqi, et al. LEO satellite access network (LEO-SAN) towards 6G: Challenges and approaches[J]. IEEE Wireless Communications, 2024, 31(2): 89–96. doi: 10.1109/MWC.011.2200310.
    [80]
    SUN Teng, LV Jiebiao, and ZHOU Tao. A transformer-based channel estimation method for OTFS systems[J]. Entropy, 2023, 25(10): 1423. doi: 10.3390/e25101423.
    [81]
    LONG Fei, NIU Kai, and LIN Jiaru. Joint channel estimation and equalization for OTFS based on EP[C]. Proceedings of 2021 IEEE Global Communications Conference, Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685527.
    [82]
    TUSHA A, ALTHUNIBAT S, HASNA M O, et al. Exploiting user diversity in OTFS transmission for beyond 5G wireless systems[J]. IEEE Wireless Communications Letters, 2022, 11(8): 1689–1693. doi: 10.1109/LWC.2022.3174455.
    [83]
    MOHAMMED S K. Time-domain to delay-Doppler domain conversion of OTFS signals in very high mobility scenarios[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6178–6183. doi: 10.1109/TVT.2021.3071942.
    [84]
    BALAKRISHNAN S and EDDINGTON C. Efficient DSP algorithm development for FPGA and ASIC technologies[C]. Proceedings of 2007 IFIP International Conference on Very Large Scale Integration, Atlanta, USA, 2007: 168–171. doi: 10.1109/VLSISOC.2007.4402492.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1418) PDF downloads(243) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return