Citation: | LIAO Yong, LUO Yu, JING Yahao. 6G New Time-delay Doppler Communication Paradigm: Technical Advantages, Design Challenges, Applications and Prospects of OTFS[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1827-1842. doi: 10.11999/JEIT231133 |
[1] |
GUO Fengxian, YU F R, ZHANG Heli, et al. Enabling massive IoT toward 6G: A comprehensive survey[J]. IEEE Internet of Things Journal, 2021, 8(15): 11891–11915. doi: 10.1109/JIOT.2021.3063686.
|
[2] |
SALH A, AUDAH L, SHAH N S M, et al. A survey on deep learning for ultra-reliable and low-latency communications challenges on 6G wireless systems[J]. IEEE Access, 2021, 9: 55098–55131. doi: 10.1109/ACCESS.2021.3069707.
|
[3] |
LV Zhihan, LOU Ranran, LI Jinhua, et al. Big data analytics for 6G-enabled massive internet of things[J]. IEEE Internet of Things Journal, 2021, 8(7): 5350–5359. doi: 10.1109/JIOT.2021.3056128.
|
[4] |
ALSAEDI W K, AHMADI H, KHAN Z, et al. Spectrum options and allocations for 6G: A regulatory and standardization review[J]. IEEE Open Journal of the Communications Society, 2023, 4: 1787–1812. doi: 10.1109/OJCOMS.2023.3301630.
|
[5] |
BANAFAA M, SHAYEA I, DIN J, et al. 6G mobile communication technology: Requirements, targets, applications, challenges, advantages, and opportunities[J]. Alexandria Engineering Journal, 2023, 64: 245–274. doi: 10.1016/j.aej.2022.08.017.
|
[6] |
ABASI A K, ALOQAILY M, OUNI B, et al. A survey on securing 6G wireless communications based optimization techniques[C]. Proceedings of 2023 International Wireless Communications and Mobile Computing, Marrakesh, Morocco, 2023: 216–223. doi: 10.1109/IWCMC58020.2023.10183210.
|
[7] |
CUI Huanxi, ZHANG Jun, GENG Yuhui, et al. Space-air-ground integrated network (SAGIN) for 6G: Requirements, architecture and challenges[J]. China Communications, 2022, 19(2): 90–108. doi: 10.23919/JCC.2022.02.008.
|
[8] |
CHANG Luyi, ZHANG Zhe, LI Pei, et al. 6G-enabled edge AI for metaverse: Challenges, methods, and future research directions[J]. Journal of Communications and Information Networks, 2022, 7(2): 107–121. doi: 10.23919/JCIN.2022.9815195.
|
[9] |
程翔, 张浩天, 杨宗辉, 等. 车联网通信感知一体化研究: 现状与发展趋势[J]. 通信学报, 2022, 43(8): 188–202. doi: 10.11959/j.issn.1000-436x.2022137.
CHENG Xiang, ZHANG Haotian, YANG Zonghui, et al. Integrated sensing and communications for Internet of vehicles: Current status and development trend[J]. Journal on Communications, 2022, 43(8): 188–202. doi: 10.11959/j.issn.1000-436x.2022137.
|
[10] |
LI Qingyu, GONG Yi, WANG Jianyu, et al. Exploring the performance of receiver algorithm in OTFS based on CNN[C]. Proceedings of 2022 IEEE International Conference on Communications Workshops, Seoul, Republic of Korea, 2022: 957–962. doi: 10.1109/ICCWorkshops53468.2022.9814529.
|
[11] |
REDDY C S, PRIYA P, SEN D, et al. Spectral efficient modem design with OTFS modulation for vehicular-IoT system[J]. IEEE Internet of Things Journal, 2023, 10(3): 2444–2458. doi: 10.1109/JIOT.2022.3211531.
|
[12] |
WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Orthogonal time-frequency space modulation: A promising next-generation waveform[J]. IEEE Wireless Communications, 2021, 28(4): 136–144. doi: 10.1109/MWC.001.2000408.
|
[13] |
XIAO Lixia, LI Shuo, QIAN Ying, et al. An overview of OTFS for internet of things: Concepts, benefits, and challenges[J]. IEEE Internet of Things Journal, 2022, 9(10): 7596–7618. doi: 10.1109/JIOT.2021.3132606.
|
[14] |
LI Mao, LIU Wei, and LEI Jing. A review on orthogonal time–frequency space modulation: State-of-art, hotspots and challenges[J]. Computer Networks, 2023, 224: 109597. doi: 10.1016/j.comnet.2023.109597.
|
[15] |
ZHANG Shumin, ZHANG Yuzhi, CHANG Jiazheng, et al. DNN-based signal detection for underwater OTFS systems[C]. Proceedings of 2022 IEEE/CIC International Conference on Communications in China, Sanshui, Foshan, China, 2022: 348–352. doi: 10.1109/ICCCWorkshops55477.2022.9896695.
|
[16] |
KHAN M S, KIM Y J, SULTAN Q, et al. Downlink synchronization for OTFS-based cellular systems in high doppler environments[J]. IEEE Access, 2021, 9: 73575–73589. doi: 10.1109/ACCESS.2021.3079429.
|
[17] |
GAO Ziqiang, DENG Xiong, ZOU Xihua, et al. Orthogonal time frequency space modulation in wideband Doppler channel[C]. Proceedings of the 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 2022: 1–6. doi: 10.1109/IECON49645.2022.9968556.
|
[18] |
TUSHA A and ARSLAN H. Low complex inter-doppler interference mitigation for OTFS systems via global receiver windowing[J]. IEEE Transactions on Vehicular Technology, 2023, 72(6): 7685–7698. doi: 10.1109/TVT.2023.3243577.
|
[19] |
CHENNIAPPAN P, PRASANA S, DEEPA D, et al. Performance analysis of Orthogonal Time Frequency Space (OTFS) modulation technique in massive MIMO system for high-speed communication[J]. AIP Conference Proceedings, 2023, 2725(1): 060003. doi: 10.1063/5.0125238.
|
[20] |
CAUS M, SHAAT M, PÉREZ-NEIRA A I, et al. Reliability oriented OTFS-based LEO satellites joint transmission scheme[C]. Proceedings of 2022 IEEE Globecom Workshops, Rio de Janeiro, Brazil, 2022: 1406–1412. doi: 10.1109/GCWkshps56602.2022.10008593.
|
[21] |
RAVITEJA P, PHAN K T, HONG Yi, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515. doi: 10.1109/TWC.2018.2860011.
|
[22] |
JIN Chenxi, BIE Zhisong, LIN Xuehong, et al. A simple two-stage equalizer for OTFS with rectangular windows[J]. IEEE Communications Letters, 2021, 25(4): 1158–1162. doi: 10.1109/LCOMM.2020.3043841.
|
[23] |
尉志青, 冯志勇, 李怡恒, 等. 太赫兹通信感知一体化波形: 现状与展望[J]. 通信学报, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.
WEI Zhiqing, FENG Zhiyong, LI Yiheng, et al. Terahertz joint communication and sensing waveform: Status and prospect[J]. Journal on Communications, 2022, 43(1): 3–10. doi: 10.11959/j.issn.1000-436x.2022007.
|
[24] |
THAJ T and VITERBO E. OTFS modem SDR implementation and experimental study of receiver impairment effects[C]. Proceedings of 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1–6. doi: 10.1109/ICCW.2019.8757167.
|
[25] |
MOZAFFARI TAZEHKAND B, AGHDAM M R G, VAKILIAN V, et al. Novel successive interference cancellation (SIC) with low-complexity for GFDM systems[J]. IEEE Access, 2022, 10: 40063–40072. doi: 10.1109/ACCESS.2022.3167051.
|
[26] |
BEMANI A, KSAIRI N, and KOUNTOURIS M. Affine frequency division multiplexing for next generation wireless communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8214–8229. doi: 10.1109/TWC.2023.3260906.
|
[27] |
SINHA A K, MOHAMMED S K, RAVITEJA P, et al. OTFS based random access preamble transmission for high mobility scenarios[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15078–15094. doi: 10.1109/TVT.2020.3034130.
|
[28] |
BAYAT M and FARHANG A. Time and frequency synchronization for OTFS[J]. IEEE Wireless Communications Letters, 2022, 11(12): 2670–2674. doi: 10.1109/LWC.2022.3214002.
|
[29] |
肖之长, 彭丽, 张沉思, 等. 基于导频辅助的OTFS载波同步技术[J]. 无线电通信技术, 2021, 47(3): 315–318. doi: 10.3969/j.issn.1003-3114.2021.03.010.
XIAO Zhichang, PENG Li, ZHANG Chensi, et al. Pilot-aided OTFS carrier synchronization technology[J]. Radio Communications Technology, 2021, 47(3): 315–318. doi: 10.3969/j.issn.1003-3114.2021.03.010.
|
[30] |
邢旺, 唐晓刚, 周一青, 等. 面向OTFS的时延-多普勒域信道估计方法综述[J]. 通信学报, 2022, 43(12): 188–201. doi: 10.11959/j.issn.1000-436x.2022224.
XING Wang, TANG Xiaogang, ZHOU Yiqing, et al. Survey of channel estimation method in delay-Doppler domain for OTFS[J]. Journal on Communications, 2022, 43(12): 188–201. doi: 10.11959/j.issn.1000-436x.2022224.
|
[31] |
LIAO Yong and LI Xue. Joint multi-domain channel estimation based on sparse Bayesian learning for OTFS system[J]. China Communications, 2023, 20(1): 14–23. doi: 10.23919/JCC.2023.01.002.
|
[32] |
ZHAO Lei, GAO Wenjing, and GUO Wenbin. Sparse Bayesian learning of delay-Doppler channel for OTFS system[J]. IEEE Communications Letters, 2020, 24(12): 2766–2769. doi: 10.1109/LCOMM.2020.3021120.
|
[33] |
WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Off-grid channel estimation with sparse Bayesian learning for OTFS systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7407–7426. doi: 10.1109/TWC.2022.3158616.
|
[34] |
WANG Qianli, LIANG Yu, ZHANG Zhengquan, et al. 2D off-grid decomposition and SBL combination for OTFS channel estimation[J]. IEEE Transactions on Wireless Communications, 2023, 22(5): 3084–3098. doi: 10.1109/TWC.2022.3215991.
|
[35] |
ZHAO Lei, YANG J, LIU Yueliang, et al. Block sparse Bayesian learning-based channel estimation for MIMO-OTFS systems[J]. IEEE Communications Letters, 2022, 26(4): 892–896. doi: 10.1109/LCOMM.2022.3144674.
|
[36] |
周硕, 周一青, 张冲, 等. ResNet使能的OTFS联合信道估计和信号检测[J]. 西安电子科技大学学报, 2023, 50(3): 19–30. doi: 10.19665/j.issn1001-2400.2023.03.002.
ZHOU Shuo, ZHOU Yiqing, ZHANG Chong, et al. ResNet enabled joint channel estimation and signal detection for OTFS[J]. Journal of Xidian University, 2023, 50(3): 19–30. doi: 10.19665/j.issn1001-2400.2023.03.002.
|
[37] |
HE Bangwei, BAI Zhiquan, MA Yuanyuan, et al. Denoising CNN based channel estimation for vehicular OTFS communication system[C]. Proceedings of the 25th International Conference on Advanced Communication Technology, Pyeongchang, Republic of Korea, 2023: 54–58. doi: 10.23919/ICACT56868.2023.10079625.
|
[38] |
ZHANG Xiaoqi, YUAN Weijie, and LIU Chang. Deep residual learning for OTFS channel estimation with arbitrary noise[C]. Proceedings of 2022 IEEE/CIC International Conference on Communications in China, Sanshui, Foshan, China, 2022: 320–324. doi: 10.1109/ICCCWorkshops55477.2022.9896721.
|
[39] |
ZHANG Xiaoqi, YUAN Weijie, LIU Chang, et al. Deep learning with a self-adaptive threshold for OTFS channel estimation[C]. Proceedings of 2022 International Symposium on Wireless Communication Systems, Hangzhou, China, 2022: 1–5. doi: 10.1109/ISWCS56560.2022.9940260.
|
[40] |
MATTU S R and CHOCKALINGAM A. An RNN based DD channel estimator for OTFS with embedded pilots[C]. Proceedings of 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications, Kyoto, Japan, 2022: 457–462. doi: 10.1109/PIMRC54779.2022.9977831.
|
[41] |
RAVITEJA P, PHAN K T, and HONG Yi. Embedded pilot-aided channel estimation for OTFS in delay–Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906–4917. doi: 10.1109/TVT.2019.2906357.
|
[42] |
SHEN Wenqian, DAI Linglong, AN Jianping, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204–4217. doi: 10.1109/TSP.2019.2919411.
|
[43] |
LI Muye, ZHANG Shun, GAO Feifei, et al. A new path division multiple access for the massive MIMO-OTFS networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 903–918. doi: 10.1109/JSAC.2020.3018826.
|
[44] |
WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Transmitter and receiver window designs for orthogonal time-frequency space modulation[J]. IEEE Transactions on Communications, 2021, 69(4): 2207–2223. doi: 10.1109/TCOMM.2021.3051386.
|
[45] |
QIAN Ying, XIAO Lixia, and JIANG Tao. SM-STBC aided orthogonal time frequency space modulation[C]. Proceedings of 2022 IEEE Wireless Communications and Networking Conference, Austin, USA, 2022: 2172–2177. doi: 10.1109/WCNC51071.2022.9771767.
|
[46] |
PRASAD R, MURTHY C R, and RAO B D. Joint channel estimation and data detection in MIMO-OFDM systems: A sparse Bayesian learning approach[J]. IEEE Transactions on Signal Processing, 2015, 63(20): 5369–5382. doi: 10.1109/TSP.2015.2451071.
|
[47] |
LI Haifeng and WEN Jinming. A new analysis for support recovery with block orthogonal matching pursuit[J]. IEEE Signal Processing Letters, 2019, 26(2): 247–251. doi: 10.1109/LSP.2018.2885919.
|
[48] |
SURABHI G D and CHOCKALINGAM A. Low-complexity linear equalization for OTFS modulation[J]. IEEE Communications Letters, 2020, 24(2): 330–334. doi: 10.1109/LCOMM.2019.2956709.
|
[49] |
KOLLENGODE RAMACHANDRAN M and CHOCKALINGAM A. MIMO-OTFS in high-doppler fading channels: Signal detection and channel estimation[C]. Proceedings of 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 206–212. doi: 10.1109/GLOCOM.2018.8647394.
|
[50] |
ZHENG Jieheng, ZHANG Lin, LI Yan, et al. An orthogonal time frequency space modulation based differential chaos shift keying transceiver for reliable communications[C]. Proceedings of 2023 IEEE 97th Vehicular Technology Conference, Florence, Italy, 2023: 1–5. doi: 10.1109/VTC2023-Spring57618.2023.10201217.
|
[51] |
梁应敞, 谭俊杰, NIYATO D. 智能无线通信技术研究概况[J]. 通信学报, 2020, 41(7): 1–17. doi: 10.11959/j.issn.1000-436x.2020145.
LIANG Yingchang, TAN Junjie, and NIYATO D. Overview on intelligent wireless communication technology[J]. Journal on Communications, 2020, 41(7): 1–17. doi: 10.11959/j.issn.1000-436x.2020145.
|
[52] |
NAIKOTI A and CHOCKALINGAM A. Low-complexity delay-Doppler symbol DNN for OTFS signal detection[C]. Proceedings of 2021 IEEE 93rd Vehicular Technology Conference, Helsinki, Finland, 2021: 1–6. doi: 10.1109/VTC2021-Spring51267.2021.9448630.
|
[53] |
ABID M H, TALIN I A, and KADIR M I. Reconfigurable intelligent surface-aided orthogonal time frequency space and its deep learning-based signal detection[J]. IEEE Access, 2023, 11: 47321–47338. doi: 10.1109/ACCESS.2023.3273297.
|
[54] |
CHENG Qingqing, SHI Zhenguo, YUAN Jinhong, et al. Environment-robust signal detection for OTFS systems using deep learning[C]. Proceedings of 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022: 47321–47338. doi: 10.1109/GLOBECOM48099.2022.10000940.
|
[55] |
ENKU Y K, BAI Baoming, WAN Fei, et al. Two-dimensional convolutional neural network-based signal detection for OTFS systems[J]. IEEE Wireless Communications Letters, 2021, 10(11): 2514–2518. doi: 10.1109/LWC.2021.3106039.
|
[56] |
SINGH A, SHARMA S, DEKA K, et al. DL-based OTFS signal detection in presence of hardware impairments[J]. IEEE Wireless Communications Letters, 2023, 12(9): 1533–1537. doi: 10.1109/LWC.2023.3281790.
|
[57] |
GONG Yi, LI Qingyu, MENG Fanke, et al. ViterbiNet-based signal detection for OTFS system[J]. IEEE Communications Letters, 2023, 27(3): 881–885. doi: 10.1109/LCOMM.2023.3237719.
|
[58] |
ZHANG Xufan, ZHANG Shengyu, XIAO Lixia, et al. Graph neural network assisted efficient signal detection for OTFS systems[J]. IEEE Communications Letters, 2023, 27(8): 2058–2062. doi: 10.1109/LCOMM.2023.3286800.
|
[59] |
LI Shuo, DING Chao, XIAO Lixia, et al. Expectation propagation aided model driven learning for OTFS signal detection[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 12407–12412. doi: 10.1109/TVT.2023.3268231.
|
[60] |
LI Qingyu, GONG Yi, MENG Fanke, et al. Data-driven receiver for OTFS system with deep learning[C]. Proceedings of the 7th IEEE International Conference on Network Intelligence and Digital Content, Beijing, China, 2021: 172–176. doi: 10.1109/IC-NIDC54101.2021.9660432.
|
[61] |
LI Qi, YUAN Jinhong, and LIN Hai. Iterative MMSE detection for orthogonal time frequency space modulation[C]. Proceedings of 2022 IEEE International Conference on Communications Workshops, Seoul, Republic of Korea, 2022: 1–6. doi: 10.1109/ICCWorkshops53468.2022.9814638.
|
[62] |
THAJ T and VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606–15622. doi: 10.1109/TVT.2020.3044276.
|
[63] |
TIWARI S, DAS S S, and RANGAMGARI V. Low complexity LMMSE Receiver for OTFS[J]. IEEE Communications Letters, 2019, 23(12): 2205–2209. doi: 10.1109/LCOMM.2019.2945564.
|
[64] |
XIANG Luping, LIU Yusha, YANG Lieliang, et al. Gaussian approximate message passing detection of orthogonal time frequency space modulation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10999–11004. doi: 10.1109/TVT.2021.3102673.
|
[65] |
ZHANG Xufan, XIAO Lixia, LI Shuo, et al. Gaussian AMP aided model-driven learning for OTFS system[J]. IEEE Communications Letters, 2022, 26(12): 2949–2953. doi: 10.1109/LCOMM.2022.3206414.
|
[66] |
HE Hengtao, WEN Chaokai, JIN Shi, et al. Model-driven deep learning for MIMO detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 1702–1715. doi: 10.1109/TSP.2020.2976585.
|
[67] |
LI Hua, DONG Yuanyuan, GONG Caihong, et al. Low complexity receiver via expectation propagation for OTFS modulation[J]. IEEE Communications Letters, 2021, 25(10): 3180–3184. doi: 10.1109/LCOMM.2021.3101827.
|
[68] |
IMT-2030 (6G)推进组. 6G网络架构愿景与关键技术展望白皮书[R]. IMT-2030 (6G), 2021.
IMT-2030(6G) Promotion Group. 6G network architecture vision and key technology outlook white paper[R]. IMT-2030 (6G), 2021.
|
[69] |
XU Weilin, HE Yating, ZHAI Shenghua, et al. Discussion on network communication technology of unmanned cluster[C]. Proceedings of 2022 10th International Conference on Information Systems and Computing Technology, Guilin, China, 2022: 48–52. doi: 10.1109/ISCTech58360.2022.00014.
|
[70] |
CHU T M C, ZEPERNICK H J, WESTERHAGEN A, et al. Performance assessment of OTFS modulation in high Doppler airborne communication networks[J]. Mobile Networks and Applications, 2022, 27(4): 1746–1756. doi: 10.1007/s11036-022-01928-4.
|
[71] |
RAVITEJA P, VITERBO E, and HONG Yi. OTFS performance on static multipath channels[J]. IEEE Wireless Communications Letters, 2019, 8(3): 745–748. doi: 10.1109/LWC.2018.2890643.
|
[72] |
ALBANESE A, SCIANCALEPORE V, and COSTA-PÉREZ X. First responders got wings: UAVs to the rescue of localization operations in beyond 5G systems[J]. IEEE Communications Magazine, 2021, 59(11): 28–34. doi: 10.1109/MCOM.101.2100273.
|
[73] |
VAEZI M, AZARI A, KHOSRAVIRAD S R, et al. Cellular, wide-area, and non-terrestrial IoT: A survey on 5G advances and the road toward 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(2): 1117–1174. doi: 10.1109/COMST.2022.3151028.
|
[74] |
ALSABAH M, NASER M A, MAHMMOD B M, et al. 6G wireless communications networks: A comprehensive survey[J]. IEEE Access, 2021, 9: 148191–148243. doi: 10.1109/ACCESS.2021.3124812.
|
[75] |
WANG Jiawei, JIANG Chunxiao, and KUANG Linling. High-mobility satellite-UAV communications: Challenges, solutions, and future research trends[J]. IEEE Communications Magazine, 2022, 60(5): 38–43. doi: 10.1109/MCOM.001.2100850.
|
[76] |
VAN WALREE P A. Propagation and scattering effects in underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering, 2013, 38(4): 614–631. doi: 10.1109/JOE.2013.2278913.
|
[77] |
JOSHI M, PUNJABI G, SAINATH B, et al. Comparative performance investigation of MIMO-OTFS and MIMO-OFDM using deep neural network modeling[C]. Proceedings of 2021 IEEE 18th India Council International Conference, Guwahati, India, 2021: 1–6. doi: 10.1109/INDICON52576.2021.9691490.
|
[78] |
QU Huiyang, LIU Guanghui, ZHANG Lei, et al. Low-dimensional subspace estimation of continuous-Doppler-spread channel in OTFS systems[J]. IEEE Transactions on Communications, 2021, 69(7): 4717–4731. doi: 10.1109/TCOMM.2021.3072744.
|
[79] |
XIAO Zhenyu, YANG Junyi, MAO Tianqi, et al. LEO satellite access network (LEO-SAN) towards 6G: Challenges and approaches[J]. IEEE Wireless Communications, 2024, 31(2): 89–96. doi: 10.1109/MWC.011.2200310.
|
[80] |
SUN Teng, LV Jiebiao, and ZHOU Tao. A transformer-based channel estimation method for OTFS systems[J]. Entropy, 2023, 25(10): 1423. doi: 10.3390/e25101423.
|
[81] |
LONG Fei, NIU Kai, and LIN Jiaru. Joint channel estimation and equalization for OTFS based on EP[C]. Proceedings of 2021 IEEE Global Communications Conference, Madrid, Spain, 2021: 1–6. doi: 10.1109/GLOBECOM46510.2021.9685527.
|
[82] |
TUSHA A, ALTHUNIBAT S, HASNA M O, et al. Exploiting user diversity in OTFS transmission for beyond 5G wireless systems[J]. IEEE Wireless Communications Letters, 2022, 11(8): 1689–1693. doi: 10.1109/LWC.2022.3174455.
|
[83] |
MOHAMMED S K. Time-domain to delay-Doppler domain conversion of OTFS signals in very high mobility scenarios[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6178–6183. doi: 10.1109/TVT.2021.3071942.
|
[84] |
BALAKRISHNAN S and EDDINGTON C. Efficient DSP algorithm development for FPGA and ASIC technologies[C]. Proceedings of 2007 IFIP International Conference on Very Large Scale Integration, Atlanta, USA, 2007: 168–171. doi: 10.1109/VLSISOC.2007.4402492.
|