Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
WANG Pengjun, FANG Haoran, LI Gang. Design of Strong Physical Unclonable Function Circuit Against Machine Learning Attacks Based on Chaos Mapping[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2281-2288. doi: 10.11999/JEIT231129
Citation: WANG Pengjun, FANG Haoran, LI Gang. Design of Strong Physical Unclonable Function Circuit Against Machine Learning Attacks Based on Chaos Mapping[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2281-2288. doi: 10.11999/JEIT231129

Design of Strong Physical Unclonable Function Circuit Against Machine Learning Attacks Based on Chaos Mapping

doi: 10.11999/JEIT231129
Funds:  The National Natural Science Foundation of China (62234008, 62374117), Wenzhou Basic Scientific Research Projects (G20220005)
  • Received Date: 2023-10-17
  • Rev Recd Date: 2024-01-21
  • Available Online: 2024-01-29
  • Publish Date: 2024-05-30
  • Physical Unclonable Function (PUF) has broad application prospects in the field of hardware security, but it is susceptible to modeling attacks based on machine learning. By studying the strong PUF circuit structure and chaotic mapping mechanism, a PUF circuit that can effectively resist machine learning modeling attacks is proposed. This circuit takes the original excitation as the initial value of the chaotic mapping, utilizes the internal relationship between the PUF excitation response mapping time and the iteration depth of the chaotic algorithm to generate unpredictable chaotic values, and uses PUF intermediate response feedback to encrypt the excitation. It can further improve the complexity of excitation and response mapping, thereby enhancing the resistance of PUF to machine learning attacks. The PUF is implemented using Artix-7 FPGA. The test results show that even with up to 1 million sets of excitation response pairs selected, the attack prediction rate based on logistic regression, support vector machine, and artificial neural network is still close to the ideal value of 50%. And the PUF has good randomness, uniqueness, and stability.
  • loading
  • [1]
    ZHOU Ziyu, LI Gang, and WANG Pengjun. A challenge-screening strategy for enhancing the stability of strong PUF based on machine learning[J]. Microelectronics Journal, 2023, 131: 105667. doi: 10.1016/j.mejo.2022.105667.
    [2]
    汪鹏君, 连佳娜, 陈博. 基于序列密码的强PUF抗机器学习攻击方法[J]. 电子与信息学报, 2021, 43(9): 2474–2481. doi: 10.11999/JEIT210726.

    WANG Pengjun, LIAN Jiana, and CHEN Bo. Sequence cipher based machine learning-attack resistance method for strong-PUF[J]. Journal of Electronics & Information Technology, 2021, 43(9): 2474–2481. doi: 10.11999/JEIT210726.
    [3]
    LI Hui, LI Gang, WANG Pengjun, et al. A novel machine learning attack resistant APUF with dual-edge acquisition[C]. Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Singapore, 2022: 1–4. doi: 10.1109/AsianHOST56390.2022.10022247.
    [4]
    XIE Yuanfeng, LI Gang, WANG Pengjun, et al. A compact weak PUF circuit based on MOSFET subthreshold leakage current[J]. IEICE Electronics Express, 2022, 19(21): 20220415. doi: 10.1587/elex.19.20220415.
    [5]
    ALI R, MA Haoyuan, HOU Zhengyi, et al. A reconfigurable arbiter MPUF with high resistance against machine learning attack[J]. IEEE Transactions on Magnetics, 2021, 57(10): 1–7. doi: 10.1109/TMAG.2021.3102838.
    [6]
    ZHANG Jiliang, SHEN Chaoqun, GUO Zhiyang, et al. CT PUF: Configurable tristate PUF against machine learning attacks for IoT Security[J]. IEEE Internet of Things Journal, 2022, 9(16): 14452–14462. doi: 10.1109/JIOT.2021.3090475.
    [7]
    WU Linjun, HU Yupeng, ZHANG Kehuan, et al. FLAM-PUF: A response–feedback-based lightweight anti-machine-learning-attack PUF[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11): 4433–4444. doi: 10.1109/TCAD.2022.3197696.
    [8]
    NASSAR H, BAUER L, and HENKEL J. CaPUF: Cascaded PUF structure for machine learning resiliency[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(11): 4349–4360. doi: 10.1109/TCAD.2022.3197539.
    [9]
    ZHANG Jieyun, XU Chongyao, LAW M K, et al. A 4T/cell amplifier-chain-based XOR PUF with strong machine learning attack resilience[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(1): 366–377. doi: 10.1109/TCSI.2021.3114084.
    [10]
    OUN A and NIAMAT M. Design of a delay-based FPGA PUF resistant to machine learning attacks[C]. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, USA, 2021: 865–868. doi: 10.1109/MWSCAS47672.2021.9531815.
    [11]
    AVVARU S V S, ZENG Ziqing, and PARHI K K. Homogeneous and heterogeneous feed-forward XOR physical Unclonable functions[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2485–2498. doi: 10.1109/TIFS.2020.2968113.
    [12]
    SHAH N, CHATTERJEE D, SAPUI B, et al. Introducing recurrence in strong PUFs for enhanced machine learning attack resistance[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2021, 11(2): 319–332. doi: 10.1109/JETCAS.2021.3075767.
    [13]
    WANG Yale, WANG Chenghua, GU Chongyan, et al. A dynamically configurable PUF and dynamic matching authentication protocol[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 1091–1104. doi: 10.1109/TETC.2021.3072421.
    [14]
    WANG Yale, WANG Chenghua, GU Chongyan, et al. A generic dynamic responding mechanism and secure authentication protocol for strong PUFs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2022, 30(9): 1256–1268. doi: 10.1109/TVLSI.2022.3189953.
    [15]
    张笑天, 汪鹏君, 张跃军, 等. 基于动态亚阈值的延迟型PUF电路设计[J]. 华东理工大学学报:自然科学版, 2022, 48(2): 237–243. doi: 10.14135/j.cnki.1006-3080.20210203001.

    ZHANG Xiaotian, WANG Pengjun, ZHANG Yuejun, et al. Design of delayed PUF circuit based on dynamic subthreshold[J]. Journal of East China University of Science and Technology, 2022, 48(2): 237–243. doi: 10.14135/j.cnki.1006-3080.20210203001.
    [16]
    PAN Peng, WANG Haiquan, SHEN Lei, et al. Equivalence of joint ML-decoding and separate MMSE-ML decoding for training-based MIMO systems[J]. IEEE Access, 2019, 7: 178862–178869. doi: 10.1109/ACCESS.2019.2958700.
    [17]
    杨剑锋, 乔佩蕊, 李永梅, 等. 机器学习分类问题及算法研究综述[J]. 统计与决策, 2019, 35(6): 36–40. doi: 10.13546/j.cnki.tjyjc.2019.06.008.

    YANG Jianfeng, QIAO Peirui, LI Yongmei, et al. A review of machine-learning classification and algorithms[J]. Statistics & Decision, 2019, 35(6): 36–40. doi: 10.13546/j.cnki.tjyjc.2019.06.008.
    [18]
    魏旭晖, 王辉. 异构网络下TCP拥塞控制的混沌特性分析[J]. 系统仿真学报, 2015, 27(7): 1541–1547. doi: 10.16182/j.cnki.joss.2015.07.018.

    WEI Xuhui and WANG Hui. Chaos analysis for TCP congestion control in heterogeneous networks[J]. Journal of System Simulation, 2015, 27(7): 1541–1547. doi: 10.16182/j.cnki.joss.2015.07.018.
    [19]
    WANNABOON C and KETTHONG P. A simple random-bit generator implemented on FPGA based on Signum chaotic map[C]. 2022 International Conference on Digital Government Technology and Innovation (DGTi-CON), Bangkok, Thailand, 2022: 101–104. doi: 10.1109/DGTi-CON53875.2022.9849189.
    [20]
    LEE C Y, BHARATHI K, LANSFORD J, et al. NIST-lite: Randomness testing of RNGs on an energy-constrained platform[C]. IEEE 39th International Conference on Computer Design (ICCD), Storrs, USA, 2021: 41–48. doi: 10.1109/ICCD53106.2021.00019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (320) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return