Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
MA Yue, MA Ruiqian, YANG Weiwei, LIN Zhi, MIAO Chen, WU Wen. Shared-aperture Jammer Assisted Covert Communication Using Time Modulated Array[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1977-1985. doi: 10.11999/JEIT231115
Citation: MA Yue, MA Ruiqian, YANG Weiwei, LIN Zhi, MIAO Chen, WU Wen. Shared-aperture Jammer Assisted Covert Communication Using Time Modulated Array[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1977-1985. doi: 10.11999/JEIT231115

Shared-aperture Jammer Assisted Covert Communication Using Time Modulated Array

doi: 10.11999/JEIT231115
Funds:  The Natural Science Foundation of Jiangsu Province (BK20230916), The National Natural Science Foundation of China (62301254, 62171464), China Postdoctoral Science Foundation (2023M731700), The Research and Innovation Fund of National University of Defense Technology (22-ZZCX-07), The Comprehensive National Science Center of Hefei
  • Received Date: 2023-10-17
  • Rev Recd Date: 2024-01-26
  • Available Online: 2024-01-31
  • Publish Date: 2024-05-30
  • The short packet covert communication using a shared-aperture jammer assisted Time-Modulated Array (TMA) is investigated for the first time in this paper. Firstly, a TMA architecture for shared-aperture jammer is proposed and an optimization method is introduced that maximizes the gain of the target direction while forming interference in non-target directions. Based on this model, closed-form expressions for the covertness constraint and covert throughput are derived. Furthermore, the transmission power and blocklength are optimized to maximize the covert throughput. Simulation results show that there exists an optimum blocklength that maximizes the covert throughput, and the proposed scheme outperforms the benchmark scheme in terms of covert communication performance.
  • loading
  • [1]
    LI Yan, DING Guoru, WANG Haichao, et al. Cooperative Multistation secure transmission in HF Skywave massive MIMO communications for wide-area IoT applications[J]. IEEE Transactions on Reliability, 2023, 72(2): 459–471. doi: 10.1109/tr.2022.3182665.
    [2]
    ARUNA M G and MOHAN K G. Secured cloud data migration technique by competent probabilistic public key encryption[J]. China Communications, 2020, 17(5): 168–190. doi: 10.23919/jcc.2020.05.014.
    [3]
    GAO Juntao, YU Haiyong, ZHU Xiuqin, et al. Blockchain-based digital rights management scheme via multiauthority ciphertext-policy attribute-based encryption and proxy re-encryption[J]. IEEE Systems Journal, 2021, 15(4): 5233–5244. doi: 10.1109/jsyst.2021.3064356.
    [4]
    ZHANG Wei, CHEN Jian, KUO Yonghong, et al. Artificial-noise-aided optimal beamforming in layered physical layer security[J]. IEEE Communications Letters, 2019, 23(1): 72–75. doi: 10.1109/lcomm.2018.2881182.
    [5]
    GUO Wenbo, SONG Changqing, XIA Xiangjie, et al. Analysis of cooperative jamming cancellation with imperfect time synchronization in physical layer security[J]. IEEE Wireless Communications Letters, 2021, 10(2): 335–338. doi: 10.1109/lwc.2020.3030075.
    [6]
    LEE S H, WANG Ligong, KHISTI A, et al. Covert communication with channel-state information at the transmitter[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(9): 2310–2319. doi: 10.1109/tifs.2018.2818650.
    [7]
    AMIN M G. Interference mitigation in spread spectrum communication systems using time-frequency distributions[J]. IEEE Transactions on Signal Processing, 1997, 45(1): 90–101. doi: 10.1109/78.552208.
    [8]
    VOLKOVSKII A R, TSIMRING L S, RULKOV N F, et al. Spread spectrum communication system with chaotic frequency modulation[J]. Chaos, 2005, 15(3): 033101. doi: 10.1063/1.1942327.
    [9]
    BASH B A, GOECKEL D, and TOWSLEY D. Limits of reliable communication with low probability of detection on AWGN channels[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1921–1930. doi: 10.1109/jsac.2013.130923.
    [10]
    TAO Liwei, YANG Weiwei, YAN Shihao, et al. Covert communication in downlink NOMA systems with random transmit power[J]. IEEE Wireless Communications Letters, 2020, 9(11): 2000–2004. doi: 10.1109/lwc.2020.3011191.
    [11]
    TOPAL O A and KURT G K. A countermeasure for traffic analysis attacks: Covert communications with digital modulation[J]. IEEE Wireless Communications Letters, 2021, 10(2): 441–445. doi: 10.1109/lwc.2020.3034664.
    [12]
    CHEN Rui, LI Zan, SHI Jia, et al. Achieving covert communication in overlay cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15113–15126. doi: 10.1109/tvt.2020.3034928.
    [13]
    HU Jinsong, YAN Shihao, ZHOU Xiaobo, et al. Covert communications without channel state information at receiver in IoT systems[J]. IEEE Internet of Things Journal, 2020, 7(11): 11103–11114. doi: 10.1109/jiot.2020.2994441.
    [14]
    SOBERS T V, BASH B A, GUHA S, et al. Covert communication in the presence of an uninformed jammer[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 6193–6206. doi: 10.1109/twc.2017.2720736.
    [15]
    GOECKEL D, SHEIKHOLESLAMI A, SOBERS T, et al. Covert communications in a dynamic interference environment[C]. 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 2018: 1–5. doi: 10.1109/spawc.2018.8445896.
    [16]
    WANG Wenhui, YAO Yinfeng, FU Xiaoyu, et al. Covert communication with cognitive jammer[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1753–1757. doi: 10.1109/lwc.2020.3003472.
    [17]
    HU Jinsong, SHAHZAD K, YAN Shihao, et al. Covert communications with a full-duplex receiver over wireless fading channels[C]. 2018 IEEE International Conference on Communications (ICC), Kansas City, USA, 2018: 1–6. doi: 10.1109/icc.2018.8422941.
    [18]
    SHAHZAD K, ZHOU Xiangyun, YAN Shihao, et al. Achieving covert wireless communications using a full-duplex receiver[J]. IEEE Transactions on Wireless Communications, 2018, 17(12): 8517–8530. doi: 10.1109/twc.2018.2878014.
    [19]
    SHMUEL O, COHEN A, and GUREWITZ O. Multi-antenna jamming in covert communication[J]. IEEE Transactions on Communications, 2021, 69(7): 4644–4658. doi: 10.1109/tcomm.2021.3067386.
    [20]
    JIANG Yu’e, WANG Liangmin, and CHEN H H. Covert communications in D2D underlaying cellular networks with antenna array assisted artificial noise transmission[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 2980–2992. doi: 10.1109/tvt.2020.2966538.
    [21]
    YU Xinchun, LUO Yuan, and CHEN Wen. Covert communication with beamforming over MISO channels in the finite blocklength regime[J]. Science China Information Sciences, 2021, 64(9): 192303. doi: 10.1007/s11432-019- 2919-5.
    [22]
    YANG Ling, YANG Weiwei, TANG Liang, et al. Covert communication for wireless networks with full-duplex multiantenna relay[J]. Complexity, 2022, 2022: 1456570. doi: 10.1155/2022/1456570.
    [23]
    MA Yue, MIAO Chen, LI Yuehua, et al. A partition-based method for harmonic beamforming of time-modulated planar array[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(4): 2112–2121. doi: 10.1109/tap.2020.3026893.
    [24]
    CHEN Qiaoyu, ZHANG Jindong, WU Wen, et al. A single-sideband time-modulated phased array with low sideband level suitable for wide-bandwidth signals[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(2): 1057–1067. doi: 10.1109/tap.2021.3111322.
    [25]
    YAN Shihao, HE Biao, ZHOU Xiangyun, et al. Delay-intolerant covert communications with either fixed or random transmit power[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(1): 129–140. doi: 10.1109/tifs.2018.2846257.
    [26]
    ZHANG Jiayu, LI Min, YAN Shihao, et al. Joint beam training and data transmission design for covert millimeter-wave communication[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2232–2245. doi: 10.1109/tifs.2021.3050070.
    [27]
    MA Ruiqian, YANG Xiaoqin, PAN Gaofeng, et al. Covert communications with channel inversion power control in the finite blocklength regime[J]. IEEE Wireless Communications Letters, 2021, 10(4): 835–839. doi: 10.1109/lwc.2020.3046508.
    [28]
    MA Ruiqian, YANG Weiwei, GUAN Xinrong, et al. Covert mmWave communications with finite blocklength against spatially random wardens[J]. IEEE Internet of Things Journal, 2024, 11(2): 3402–3416. doi: 10.1109/jiot.2023.3296414.
    [29]
    MA Ruiqian, YANG Weiwei, TAO Liwei, et al. Covert communications with randomly distributed wardens in the finite blocklength regime[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 533–544. doi: 10.1109/tvt.2021.3128600.
    [30]
    MA Ruiqian, YANG Weiwei, SHI Hui, et al. Covert communication with a spectrum sharing relay in the finite blocklength regime[J]. China Communications, 2023, 20(4): 195–211. doi: 10.23919/jcc.fa.2022-0490.202304.
    [31]
    MESA A, CASTROMAYOR K, GARILLOS-MANLIGUEZ C, et al. Cuckoo search via Levy flights applied to uncapacitated facility location problem[J]. Journal of Industrial Engineering International, 2018, 14(3): 585–592. doi: 10.1007/s40092-017-0248-0.
    [32]
    ZHANG Ruoyu, SHIM B, YUAN Weijie, et al. Integrated sensing and communication waveform design with sparse vector coding: Low sidelobes and ultra reliability[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4489–4494. doi: 10.1109/tvt.2022.3146280.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (402) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return