Advanced Search
Volume 46 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
SUN Qiang, CHEN Yuan. Bimodal Emotion Recognition With Adaptive Integration of Multi-level Spatial-Temporal Features and Specific-Shared Feature Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(2): 574-587. doi: 10.11999/JEIT231110
Citation: SUN Qiang, CHEN Yuan. Bimodal Emotion Recognition With Adaptive Integration of Multi-level Spatial-Temporal Features and Specific-Shared Feature Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(2): 574-587. doi: 10.11999/JEIT231110

Bimodal Emotion Recognition With Adaptive Integration of Multi-level Spatial-Temporal Features and Specific-Shared Feature Fusion

doi: 10.11999/JEIT231110
Funds:  The Science and Technology Project of Xi’an City (22GXFW0086), The Science and Technology Project of Beilin District in Xi’an City (GX2243), The School-Enterprise Collaborative Innovation Fund for Graduate Students of Xi’an University of Technology (310/252062108)
  • Received Date: 2023-10-11
  • Rev Recd Date: 2024-01-29
  • Available Online: 2024-02-02
  • Publish Date: 2024-02-29
  • There are usually two challenging issues in the field of bimodal emotion recognition combining ElectroEncephaloGram (EEG) and facial images: (1) How to learn more significant emotionally semantic features from EEG signals in an end-to-end manner; (2) How to effectively integrate bimodal information to capture the coherence and complementarity of emotional semantics among bimodal features. In this paper, a bimodal emotion recognition model is proposed via the adaptive integration of multi-level spatial-temporal features and the fusion of specific-shared features. On the one hand, in order to obtain more significant emotionally semantic features from EEG signals, a module, called adaptive integration of multi-level spatial-temporal features, is designed. The spatial-temporal features of EEG signals are firstly captured with a dual-flow structure before the features from each level are integrated by taking into consideration the weights deriving from the similarity of features. Finally, the relatively important feature information from each level is adaptively learned based on the gating mechanism. On the other hand, in order to leverage the emotionally semantic consistency and complementarity between EEG signals and facial images, one module fusing specific-shared features is devised. Emotionally semantic features are learned jointly through two branches: specific-feature learning and shared-feature learning. The loss function is also incorporated to automatically extract the specific semantic information for each modality and the shared semantic information among the modalities. On both the DEAP and MAHNOB-HCI datasets, cross-experimental verification and 5-fold cross-validation strategies are used to assess the performance of the proposed model. The experimental results and their analysis demonstrate that the model achieves competitive results, providing an effective solution for bimodal emotion recognition based on EEG signals and facial images.
  • loading
  • [1]
    LI Wei, HUAN Wei, HOU Bowen, et al. Can emotion be transferred?—A review on transfer learning for EEG-based emotion recognition[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(3): 833–846. doi: 10.1109/TCDS.2021.3098842.
    [2]
    魏薇. 基于加权融合策略的情感识别建模方法研究[D]. [博士论文], 北京邮电大学, 2019.

    WEI Wei. Research on modeling approaches of emotion recognition based on weighted fusion strategy[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2019.
    [3]
    张镱鲽. 基于注意力机制的深度学习情感识别方法研究[D]. [硕士论文], 辽宁师范大学, 2022. doi: 10.27212/d.cnki.glnsu.2022.000484.

    ZHANG Yidie. Research on deep learning emotion recognition method based on attention mechanism[D]. [Master dissertation], Liaoning Normal University, 2022. doi: 10.27212/d.cnki.glnsu.2022.000484.
    [4]
    姚鸿勋, 邓伟洪, 刘洪海, 等. 情感计算与理解研究发展概述[J]. 中国图象图形学报, 2022, 27(6): 2008–2035. doi: 10.11834/jig.220085.

    YAO Hongxun, DENG Weihong, LIU Honghai, et al. An overview of research development of affective computing and understanding[J]. Journal of Image and Graphics, 2022, 27(6): 2008–2035. doi: 10.11834/jig.220085.
    [5]
    GONG Shu, XING Kaibo, CICHOCKI A, et al. Deep learning in EEG: Advance of the last ten-year critical period[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(2): 348–365. doi: 10.1109/TCDS.2021.3079712.
    [6]
    柳长源, 李文强, 毕晓君. 基于RCNN-LSTM的脑电情感识别研究[J]. 自动化学报, 2022, 48(3): 917–925. doi: 10.16383/j.aas.c190357.

    LIU Changyuan, LI Wenqiang, and BI Xiaojun. Research on EEG emotion recognition based on RCNN-LSTM[J]. Acta Automatica Sinica, 2022, 48(3): 917–925. doi: 10.16383/j.aas.c190357.
    [7]
    DU Xiaobing, MA Cuixia, ZHANG Guanhua, et al. An efficient LSTM network for emotion recognition from multichannel EEG signals[J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1528–1540. doi: 10.1109/TAFFC.2020.3013711.
    [8]
    HOU Fazheng, LIU Junjie, BAI Zhongli, et al. EEG-based emotion recognition for hearing impaired and normal individuals with residual feature pyramids network based on time–frequency–spatial features[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2505011. doi: 10.1109/TIM.2023.3240230.
    [9]
    刘嘉敏, 苏远歧, 魏平, 等. 基于长短记忆与信息注意的视频–脑电交互协同情感识别[J]. 自动化学报, 2020, 46(10): 2137–2147. doi: 10.16383/j.aas.c180107.

    LIU Jiamin, SU Yuanqi, WEI Ping, et al. Video-EEG based collaborative emotion recognition using LSTM and information-attention[J]. Acta Automatica Sinica, 2020, 46(10): 2137–2147. doi: 10.16383/j.aas.c180107.
    [10]
    WANG Mei, HUANG Ziyang, LI Yuancheng, et al. Maximum weight multi-modal information fusion algorithm of electroencephalographs and face images for emotion recognition[J]. Computers & Electrical Engineering, 2021, 94: 107319. doi: 10.1016/j.compeleceng.2021.107319.
    [11]
    NGAI W K, XIE H R, ZOU D, et al. Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources[J]. Information Fusion, 2022, 77: 107–117. doi: 10.1016/j.inffus.2021.07.007.
    [12]
    SALAMA E S, EL-KHORIBI R A, SHOMAN M E, et al. A 3D-convolutional neural network framework with ensemble learning techniques for multi-modal emotion recognition[J]. Egyptian Informatics Journal, 2021, 22(2): 167–176. doi: 10.1016/j.eij.2020.07.005.
    [13]
    杨杨, 詹德川, 姜远, 等. 可靠多模态学习综述[J]. 软件学报, 2021, 32(4): 1067–1081. doi: 10.13328/j.cnki.jos.006167.

    YANG Yang, ZHAN Dechuan, JIANG Yuan, et al. Reliable multi-modal learning: A survey[J]. Journal of Software, 2021, 32(4): 1067–1081. doi: 10.13328/j.cnki.jos.006167.
    [14]
    ZHANG Yuhao, HOSSAIN M Z, and RAHMAN S. DeepVANet: A deep end-to-end network for multi-modal emotion recognition[C]. The 18th IFIP TC 13 International Conference on Human-Computer Interaction, Bari, Italy, 2021: 227–237. doi: 10.1007/978-3-030-85613-7_16.
    [15]
    RAYATDOOST S, RUDRAUF D, and SOLEYMANI M. Multimodal gated information fusion for emotion recognition from EEG signals and facial behaviors[C]. 2020 International Conference on Multimodal Interaction, Utrecht, The Netherlands, 2020: 655–659. doi: 10.1145/3382507.3418867.
    [16]
    FANG Yuchun, RONG Ruru, and HUANG Jun. Hierarchical fusion of visual and physiological signals for emotion recognition[J]. Multidimensional Systems and Signal Processing, 2021, 32(4): 1103–1121. doi: 10.1007/s11045-021-00774-z.
    [17]
    CHOI D Y, KIM D H, and SONG B C. Multimodal attention network for continuous-time emotion recognition using video and EEG signals[J]. IEEE Access, 2020, 8: 203814–203826. doi: 10.1109/ACCESS.2020.3036877.
    [18]
    ZHAO Yifeng and CHEN Deyun. Expression EEG multimodal emotion recognition method based on the bidirectional LSTM and attention mechanism[J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 9967592. doi: 10.1155/2021/9967592.
    [19]
    HE Yu, SUN Licai, LIAN Zheng, et al. Multimodal temporal attention in sentiment analysis[C]. The 3rd International on Multimodal Sentiment Analysis Workshop and Challenge, Lisboa, Portugal, 2022: 61–66. doi: 10.1145/3551876.3554811.
    [20]
    BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351. doi: 10.5555/3157096.3157135.
    [21]
    LIU Dongjun, DAI Weichen, ZHANG Hangkui, et al. Brain-Machine coupled learning method for facial emotion recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10703–10717. doi: 10.1109/TPAMI.2023.3257846.
    [22]
    李幼军, 黄佳进, 王海渊, 等. 基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究[J]. 通信学报, 2017, 38(12): 109–120. doi: 10.11959/j.issn.1000-436x.2017294.

    LI Youjun, HUANG Jiajin, WANG Haiyuan, et al. Study of emotion recognition based on fusion multi-modal bio-signal with SAE and LSTM recurrent neural network[J]. Journal on Communications, 2017, 38(12): 109–120. doi: 10.11959/j.issn.1000-436x.2017294.
    [23]
    YANG Yi, GAO Qiang, SONG Yu, et al. Investigating of deaf emotion cognition pattern by EEG and facial expression combination[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(2): 589–599. doi: 10.1109/JBHI.2021.3092412.
    [24]
    王斐, 吴仕超, 刘少林, 等. 基于脑电信号深度迁移学习的驾驶疲劳检测[J]. 电子与信息学报, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900.

    WANG Fei, WU Shichao, LIU Shaolin, et al. Driver fatigue detection through deep transfer learning in an electroencephalogram-based system[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2264–2272. doi: 10.11999/JEIT180900.
    [25]
    LI Dahua, LIU Jiayin, YANG Yi, et al. Emotion recognition of subjects with hearing impairment based on fusion of facial expression and EEG topographic map[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 437–445. doi: 10.1109/TNSRE.2022.3225948.
    [26]
    SIDDHARTH, JUNG T P, and SEJNOWSKI T J. Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing[J]. IEEE Transactions on Affective Computing, 2022, 13(1): 96–107. doi: 10.1109/TAFFC.2019.2916015.
    [27]
    杨俊, 马正敏, 沈韬, 等. 基于深度时空特征融合的多通道运动想象EEG解码方法[J]. 电子与信息学报, 2021, 43(1): 196–203. doi: 10.11999/JEIT190300.

    YANG Jun, MA Zhengmin, SHEN Tao, et al. Multichannel MI-EEG feature decoding based on deep learning[J]. Journal of Electronics & Information Technology, 2021, 43(1): 196–203. doi: 10.11999/JEIT190300.
    [28]
    AN Yi, XU Ning, and QU Zhen. Leveraging spatial-temporal convolutional features for EEG-based emotion recognition[J]. Biomedical Signal Processing and Control, 2021, 69: 102743. doi: 10.1016/j.bspc.2021.102743.
    [29]
    陈景霞, 郝为, 张鹏伟, 等. 基于混合神经网络的脑电时空特征情感分类[J]. 软件学报, 2021, 32(12): 3869–3883. doi: 10.13328/j.cnki.jos.006123.

    CHEN Jingxia, HAO Wei, ZHANG Pengwei, et al. Emotion classification of spatiotemporal EEG features using hybrid neural networks[J]. Journal of Software, 2021, 32(12): 3869–3883. doi: 10.13328/j.cnki.jos.006123.
    [30]
    COMAS J, ASPANDI D, and BINEFA X. End-to-end facial and physiological model for affective computing and applications[C]. The 15th IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires, Argentina, 2020: 93–100. doi: 10.1109/FG47880.2020.00001.
    [31]
    KUMAR A, SHARMA K, and SHARMA A. MEmoR: A multimodal emotion recognition using affective biomarkers for smart prediction of emotional health for people analytics in smart industries[J]. Image and Vision Computing, 2022, 123: 104483. doi: 10.1016/j.imavis.2022.104483.
    [32]
    LI Jia, ZHANG Ziyang, LANG Junjie, et al. Hybrid multimodal feature extraction, mining and fusion for sentiment analysis[C]. The 3rd International on Multimodal Sentiment Analysis Workshop and Challenge, Lisboa, Portugal, 2022: 81–88. doi: 10.1145/3551876.3554809.
    [33]
    DING Yi, ROBINSON N, ZHANG Su, et al. TSception: Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 2238–2250. doi: 10.1109/TAFFC.2022.3169001.
    [34]
    KULLBACK S and LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79–86. doi: 10.1214/aoms/1177729694.
    [35]
    GRETTON A, BORGWARDT K M, RASCH M J, et al. A kernel two-sample test[J]. The Journal of Machine Learning Research, 2012, 13: 723–773. doi: 10.5555/2188385.2188410.
    [36]
    ZELLINGER W, MOSER B A, GRUBINGER T, et al. Robust unsupervised domain adaptation for neural networks via moment alignment[J]. Information Sciences, 2019, 483: 174–191. doi: 10.1016/j.ins.2019.01.025.
    [37]
    KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: A database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18–31. doi: 10.1109/T-AFFC.2011.15.
    [38]
    SOLEYMANI M, LICHTENAUER J, PUN T, et al. A multimodal database for affect recognition and implicit tagging[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 42–55. doi: 10.1109/T-AFFC.2011.25.
    [39]
    HUANG Yongrui, YANG Jianhao, LIU Siyu, et al. Combining facial expressions and electroencephalography to enhance emotion recognition[J]. Future Internet, 2019, 11(5): 105. doi: 10.3390/fi11050105.
    [40]
    ZHU Qingyang, LU Guanming, and YAN Jingjie. Valence-arousal model based emotion recognition using EEG, peripheral physiological signals and facial expression[C]. The 4th International Conference on Machine Learning and Soft Computing, Haiphong City, Vietnam, 2020: 81–85. doi: 10.1145/3380688.3380694.
    [41]
    LI Ruixin, LIANG Tan, LIU Xiaojian, et al. MindLink-Eumpy: An open-source python toolbox for multimodal emotion recognition[J]. Frontiers in Human Neuroscience, 2021, 15: 621493. doi: 10.3389/fnhum.2021.621493.
    [42]
    ZHANG Yong, CHENG Cheng, WANG Shuai, et al. Emotion recognition using heterogeneous convolutional neural networks combined with multimodal factorized bilinear pooling[J]. Biomedical Signal Processing and Control, 2022, 77: 103877. doi: 10.1016/j.bspc.2022.103877.
    [43]
    CHEN Jingxia, LIU Yang, XUE Wen, et al. Multimodal EEG emotion recognition based on the attention recurrent graph convolutional network[J]. Information, 2022, 13(11): 550. doi: 10.3390/info13110550.
    [44]
    WU Yongzhen and LI Jinhua. Multi-modal emotion identification fusing facial expression and EEG[J]. Multimedia Tools and Applications, 2023, 82(7): 10901–10919. doi: 10.1007/s11042-022-13711-4.
    [45]
    WANG Shuai, QU Jingzi, ZHANG Yong, et al. Multimodal emotion recognition from EEG signals and facial expressions[J]. IEEE Access, 2023, 11: 33061–33068. doi: 10.1109/ACCESS.2023.3263670.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(6)

    Article Metrics

    Article views (587) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return