| Citation: | SUN Qiang, CHEN Yuan. Bimodal Emotion Recognition With Adaptive Integration of Multi-level Spatial-Temporal Features and Specific-Shared Feature Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(2): 574-587. doi: 10.11999/JEIT231110 | 
 
	                | [1] | LI Wei, HUAN Wei, HOU Bowen,  et al. Can emotion be transferred?—A review on transfer learning for EEG-based emotion recognition[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(3): 833–846. doi:  10.1109/TCDS.2021.3098842. | 
| [2] | 魏薇. 基于加权融合策略的情感识别建模方法研究[D]. [博士论文], 北京邮电大学, 2019. WEI Wei. Research on modeling approaches of emotion recognition based on weighted fusion strategy[D]. [Ph. D. dissertation], Beijing University of Posts and Telecommunications, 2019. | 
| [3] | 张镱鲽. 基于注意力机制的深度学习情感识别方法研究[D]. [硕士论文], 辽宁师范大学, 2022. doi:  10.27212/d.cnki.glnsu.2022.000484. ZHANG Yidie. Research on deep learning emotion recognition method based on attention mechanism[D]. [Master dissertation], Liaoning Normal University, 2022. doi:  10.27212/d.cnki.glnsu.2022.000484. | 
| [4] | 姚鸿勋, 邓伟洪, 刘洪海, 等. 情感计算与理解研究发展概述[J]. 中国图象图形学报, 2022, 27(6): 2008–2035. doi:  10.11834/jig.220085. YAO Hongxun, DENG Weihong, LIU Honghai,  et al. An overview of research development of affective computing and understanding[J]. Journal of Image and Graphics, 2022, 27(6): 2008–2035. doi:  10.11834/jig.220085. | 
| [5] | GONG Shu, XING Kaibo, CICHOCKI A,  et al. Deep learning in EEG: Advance of the last ten-year critical period[J]. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14(2): 348–365. doi:  10.1109/TCDS.2021.3079712. | 
| [6] | 柳长源, 李文强, 毕晓君. 基于RCNN-LSTM的脑电情感识别研究[J]. 自动化学报, 2022, 48(3): 917–925. doi:  10.16383/j.aas.c190357. LIU Changyuan, LI Wenqiang, and BI Xiaojun. Research on EEG emotion recognition based on RCNN-LSTM[J]. Acta Automatica Sinica, 2022, 48(3): 917–925. doi:  10.16383/j.aas.c190357. | 
| [7] | DU Xiaobing, MA Cuixia, ZHANG Guanhua,  et al. An efficient LSTM network for emotion recognition from multichannel EEG signals[J]. IEEE Transactions on Affective Computing, 2022, 13(3): 1528–1540. doi:  10.1109/TAFFC.2020.3013711. | 
| [8] | HOU Fazheng, LIU Junjie, BAI Zhongli,  et al. EEG-based emotion recognition for hearing impaired and normal individuals with residual feature pyramids network based on time–frequency–spatial features[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2505011. doi:  10.1109/TIM.2023.3240230. | 
| [9] | 刘嘉敏, 苏远歧, 魏平, 等. 基于长短记忆与信息注意的视频–脑电交互协同情感识别[J]. 自动化学报, 2020, 46(10): 2137–2147. doi:  10.16383/j.aas.c180107. LIU Jiamin, SU Yuanqi, WEI Ping,  et al. Video-EEG based collaborative emotion recognition using LSTM and information-attention[J]. Acta Automatica Sinica, 2020, 46(10): 2137–2147. doi:  10.16383/j.aas.c180107. | 
| [10] | WANG Mei, HUANG Ziyang, LI Yuancheng,  et al. Maximum weight multi-modal information fusion algorithm of electroencephalographs and face images for emotion recognition[J]. Computers & Electrical Engineering, 2021, 94: 107319. doi:  10.1016/j.compeleceng.2021.107319. | 
| [11] | NGAI W K, XIE H R, ZOU D,  et al. Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources[J]. Information Fusion, 2022, 77: 107–117. doi:  10.1016/j.inffus.2021.07.007. | 
| [12] | SALAMA E S, EL-KHORIBI R A, SHOMAN M E,  et al. A 3D-convolutional neural network framework with ensemble learning techniques for multi-modal emotion recognition[J]. Egyptian Informatics Journal, 2021, 22(2): 167–176. doi:  10.1016/j.eij.2020.07.005. | 
| [13] | 杨杨, 詹德川, 姜远, 等. 可靠多模态学习综述[J]. 软件学报, 2021, 32(4): 1067–1081. doi:  10.13328/j.cnki.jos.006167. YANG Yang, ZHAN Dechuan, JIANG Yuan,  et al. Reliable multi-modal learning: A survey[J]. Journal of Software, 2021, 32(4): 1067–1081. doi:  10.13328/j.cnki.jos.006167. | 
| [14] | ZHANG Yuhao, HOSSAIN M Z, and RAHMAN S. DeepVANet: A deep end-to-end network for multi-modal emotion recognition[C]. The 18th IFIP TC 13 International Conference on Human-Computer Interaction, Bari, Italy, 2021: 227–237. doi:  10.1007/978-3-030-85613-7_16. | 
| [15] | RAYATDOOST S, RUDRAUF D, and SOLEYMANI M. Multimodal gated information fusion for emotion recognition from EEG signals and facial behaviors[C]. 2020 International Conference on Multimodal Interaction, Utrecht, The Netherlands, 2020: 655–659. doi:  10.1145/3382507.3418867. | 
| [16] | FANG Yuchun, RONG Ruru, and HUANG Jun. Hierarchical fusion of visual and physiological signals for emotion recognition[J]. Multidimensional Systems and Signal Processing, 2021, 32(4): 1103–1121. doi:  10.1007/s11045-021-00774-z. | 
| [17] | CHOI D Y, KIM D H, and SONG B C. Multimodal attention network for continuous-time emotion recognition using video and EEG signals[J]. IEEE Access, 2020, 8: 203814–203826. doi:  10.1109/ACCESS.2020.3036877. | 
| [18] | ZHAO Yifeng and CHEN Deyun. Expression EEG multimodal emotion recognition method based on the bidirectional LSTM and attention mechanism[J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 9967592. doi:  10.1155/2021/9967592. | 
| [19] | HE Yu, SUN Licai, LIAN Zheng,    et al. Multimodal temporal attention in sentiment analysis[C]. The 3rd International on Multimodal Sentiment Analysis Workshop and Challenge, Lisboa, Portugal, 2022: 61–66. doi:  10.1145/3551876.3554811. | 
| [20] | BOUSMALIS K, TRIGEORGIS G, SILBERMAN N,    et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351. doi:  10.5555/3157096.3157135. | 
| [21] | LIU Dongjun, DAI Weichen, ZHANG Hangkui,  et al. Brain-Machine coupled learning method for facial emotion recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10703–10717. doi:  10.1109/TPAMI.2023.3257846. | 
| [22] | 李幼军, 黄佳进, 王海渊, 等. 基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究[J]. 通信学报, 2017, 38(12): 109–120. doi:  10.11959/j.issn.1000-436x.2017294. LI Youjun, HUANG Jiajin, WANG Haiyuan,  et al. Study of emotion recognition based on fusion multi-modal bio-signal with SAE and LSTM recurrent neural network[J]. Journal on Communications, 2017, 38(12): 109–120. doi:  10.11959/j.issn.1000-436x.2017294. | 
| [23] | YANG Yi, GAO Qiang, SONG Yu,  et al. Investigating of deaf emotion cognition pattern by EEG and facial expression combination[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(2): 589–599. doi:  10.1109/JBHI.2021.3092412. | 
| [24] | 王斐, 吴仕超, 刘少林, 等. 基于脑电信号深度迁移学习的驾驶疲劳检测[J]. 电子与信息学报, 2019, 41(9): 2264–2272. doi:  10.11999/JEIT180900. WANG Fei, WU Shichao, LIU Shaolin,  et al. Driver fatigue detection through deep transfer learning in an electroencephalogram-based system[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2264–2272. doi:  10.11999/JEIT180900. | 
| [25] | LI Dahua, LIU Jiayin, YANG Yi,  et al. Emotion recognition of subjects with hearing impairment based on fusion of facial expression and EEG topographic map[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 437–445. doi:  10.1109/TNSRE.2022.3225948. | 
| [26] | SIDDHARTH, JUNG T P, and SEJNOWSKI T J. Utilizing deep learning towards multi-modal bio-sensing and vision-based affective computing[J]. IEEE Transactions on Affective Computing, 2022, 13(1): 96–107. doi:  10.1109/TAFFC.2019.2916015. | 
| [27] | 杨俊, 马正敏, 沈韬, 等. 基于深度时空特征融合的多通道运动想象EEG解码方法[J]. 电子与信息学报, 2021, 43(1): 196–203. doi:  10.11999/JEIT190300. YANG Jun, MA Zhengmin, SHEN Tao,  et al. Multichannel MI-EEG feature decoding based on deep learning[J]. Journal of Electronics & Information Technology, 2021, 43(1): 196–203. doi:  10.11999/JEIT190300. | 
| [28] | AN Yi, XU Ning, and QU Zhen. Leveraging spatial-temporal convolutional features for EEG-based emotion recognition[J]. Biomedical Signal Processing and Control, 2021, 69: 102743. doi:  10.1016/j.bspc.2021.102743. | 
| [29] | 陈景霞, 郝为, 张鹏伟, 等. 基于混合神经网络的脑电时空特征情感分类[J]. 软件学报, 2021, 32(12): 3869–3883. doi:  10.13328/j.cnki.jos.006123. CHEN Jingxia, HAO Wei, ZHANG Pengwei,  et al. Emotion classification of spatiotemporal EEG features using hybrid neural networks[J]. Journal of Software, 2021, 32(12): 3869–3883. doi:  10.13328/j.cnki.jos.006123. | 
| [30] | COMAS J, ASPANDI D, and BINEFA X. End-to-end facial and physiological model for affective computing and applications[C]. The 15th IEEE International Conference on Automatic Face and Gesture Recognition, Buenos Aires, Argentina, 2020: 93–100. doi:  10.1109/FG47880.2020.00001. | 
| [31] | KUMAR A, SHARMA K, and SHARMA A. MEmoR: A multimodal emotion recognition using affective biomarkers for smart prediction of emotional health for people analytics in smart industries[J]. Image and Vision Computing, 2022, 123: 104483. doi:  10.1016/j.imavis.2022.104483. | 
| [32] | LI Jia, ZHANG Ziyang, LANG Junjie,    et al. Hybrid multimodal feature extraction, mining and fusion for sentiment analysis[C]. The 3rd International on Multimodal Sentiment Analysis Workshop and Challenge, Lisboa, Portugal, 2022: 81–88. doi:  10.1145/3551876.3554809. | 
| [33] | DING Yi, ROBINSON N, ZHANG Su,  et al. TSception: Capturing temporal dynamics and spatial asymmetry from EEG for emotion recognition[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 2238–2250. doi:  10.1109/TAFFC.2022.3169001. | 
| [34] | KULLBACK S and LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79–86. doi:  10.1214/aoms/1177729694. | 
| [35] | GRETTON A, BORGWARDT K M, RASCH M J,  et al. A kernel two-sample test[J]. The Journal of Machine Learning Research, 2012, 13: 723–773. doi:  10.5555/2188385.2188410. | 
| [36] | ZELLINGER W, MOSER B A, GRUBINGER T,  et al. Robust unsupervised domain adaptation for neural networks via moment alignment[J]. Information Sciences, 2019, 483: 174–191. doi:  10.1016/j.ins.2019.01.025. | 
| [37] | KOELSTRA S, MUHL C, SOLEYMANI M,  et al. DEAP: A database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18–31. doi:  10.1109/T-AFFC.2011.15. | 
| [38] | SOLEYMANI M, LICHTENAUER J, PUN T,  et al. A multimodal database for affect recognition and implicit tagging[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 42–55. doi:  10.1109/T-AFFC.2011.25. | 
| [39] | HUANG Yongrui, YANG Jianhao, LIU Siyu,  et al. Combining facial expressions and electroencephalography to enhance emotion recognition[J]. Future Internet, 2019, 11(5): 105. doi:  10.3390/fi11050105. | 
| [40] | ZHU Qingyang, LU Guanming, and YAN Jingjie. Valence-arousal model based emotion recognition using EEG, peripheral physiological signals and facial expression[C]. The 4th International Conference on Machine Learning and Soft Computing, Haiphong City, Vietnam, 2020: 81–85. doi:  10.1145/3380688.3380694. | 
| [41] | LI Ruixin, LIANG Tan, LIU Xiaojian,  et al. MindLink-Eumpy: An open-source python toolbox for multimodal emotion recognition[J]. Frontiers in Human Neuroscience, 2021, 15: 621493. doi:  10.3389/fnhum.2021.621493. | 
| [42] | ZHANG Yong, CHENG Cheng, WANG Shuai,  et al. Emotion recognition using heterogeneous convolutional neural networks combined with multimodal factorized bilinear pooling[J]. Biomedical Signal Processing and Control, 2022, 77: 103877. doi:  10.1016/j.bspc.2022.103877. | 
| [43] | CHEN Jingxia, LIU Yang, XUE Wen,  et al. Multimodal EEG emotion recognition based on the attention recurrent graph convolutional network[J]. Information, 2022, 13(11): 550. doi:  10.3390/info13110550. | 
| [44] | WU Yongzhen and LI Jinhua. Multi-modal emotion identification fusing facial expression and EEG[J]. Multimedia Tools and Applications, 2023, 82(7): 10901–10919. doi:  10.1007/s11042-022-13711-4. | 
| [45] | WANG Shuai, QU Jingzi, ZHANG Yong,  et al. Multimodal emotion recognition from EEG signals and facial expressions[J]. IEEE Access, 2023, 11: 33061–33068. doi:  10.1109/ACCESS.2023.3263670. | 
