Advanced Search
Volume 46 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
SUN Qiang, WANG Shuyu. Self-supervised Multimodal Emotion Recognition Combining Temporal Attention Mechanism and Unimodal Label Automatic Generation Strategy[J]. Journal of Electronics & Information Technology, 2024, 46(2): 588-601. doi: 10.11999/JEIT231107
Citation: SUN Qiang, WANG Shuyu. Self-supervised Multimodal Emotion Recognition Combining Temporal Attention Mechanism and Unimodal Label Automatic Generation Strategy[J]. Journal of Electronics & Information Technology, 2024, 46(2): 588-601. doi: 10.11999/JEIT231107

Self-supervised Multimodal Emotion Recognition Combining Temporal Attention Mechanism and Unimodal Label Automatic Generation Strategy

doi: 10.11999/JEIT231107
Funds:  The Science and Technology Project of Xi’an City (22GXFW0086), The Science and Technology Project of Beilin District in Xi’an City (GX2243)
  • Received Date: 2023-10-11
  • Rev Recd Date: 2024-01-30
  • Available Online: 2024-02-02
  • Publish Date: 2024-02-29
  • Most multimodal emotion recognition methods aim to find an effective fusion mechanism to construct the features from heterogeneous modalities, so as to learn the feature representation with semantic consistency. However, these methods usually ignore the emotionally semantic differences between modalities. To solve this problem, one multi-task learning framework is proposed. By training one multimodal task and three unimodal tasks jointly, the emotionally semantic consistency information among multimodal features and the emotionally semantic difference information contained in each modality are respectively learned. Firstly, in order to learn the emotionally semantic consistency information, one Temporal Attention Mechanism (TAM) based on a multilayer recurrent neural network is proposed. The contribution degree of emotional features is described by assigning different weights to time series feature vectors. Then, for multimodal fusion, the fine-grained feature fusion per semantic dimension is carried out in the semantic space. Secondly, one self-supervised Unimodal Label Automatic Generation (ULAG) strategy based on the inter-modal feature vector similarity is proposed in order to effectively learn the difference information of emotional semantics in each modality. A large number of experimental results on three datasets CMU-MOSI, CMU-MOSEI, CH-SIMS, confirm that the proposed TAM-ULAG model has strong competitiveness, and has improved the classification indices ($ Ac{c_2} $, $ {F_1} $) and regression index (MAE, Corr) compared with the current benchmark models. For binary classification, the recognition rate is 87.2% and 85.8% on the CMU-MOSEI and CMU-MOSEI datasets, and 81.47% on the CH-SIMS dataset. The results show that simultaneously learning the emotionally semantic consistency information and the emotionally semantic difference information for each modality is helpful in improving the performance of self-supervised multimodal emotion recognition method.
  • loading
  • [1]
    曾子明, 孙守强, 李青青. 基于融合策略的突发公共卫生事件网络舆情多模态负面情感识别[J]. 情报学报, 2023, 42(5): 611–622. doi: 10.3772/j.issn.1000-0135.2023.05.009.

    ZENG Ziming, SUN Shouqiang, and LI Qingqing. Multimodal negative sentiment recognition in online public opinion during public health emergencies based on fusion strategy[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(5): 611–622. doi: 10.3772/j.issn.1000-0135.2023.05.009.
    [2]
    姚鸿勋, 邓伟洪, 刘洪海, 等. 情感计算与理解研究发展概述[J]. 中国图象图形学报, 2022, 27(6): 2008–2035. doi: 10.11834/jig.220085.

    YAO Hongxun, DENG Weihong, LIU Honghai, et al. An overview of research development of affective computing and understanding[J]. Journal of Image and Graphics, 2022, 27(6): 2008–2035. doi: 10.11834/jig.220085.
    [3]
    KUMAR P and RAMAN B. A BERT based dual-channel explainable text emotion recognition system[J]. Neural Networks, 2022, 150: 392–407. doi: 10.1016/j.neunet.2022.03.017.
    [4]
    曾义夫, 蓝天, 吴祖峰, 等. 基于双记忆注意力的方面级别情感分类模型[J]. 计算机学报, 2019, 42(8): 1845–1857. doi: 10.11897/SP.J.1016.2019.01845.

    ZENG Yifu, LAN Tian, WU Zufeng, et al. Bi-memory based attention model for aspect level sentiment classification[J]. Chinese Journal of Computers, 2019, 42(8): 1845–1857. doi: 10.11897/SP.J.1016.2019.01845.
    [5]
    BAKHSHI A, HARIMI A, and CHALUP S. CyTex: Transforming speech to textured images for speech emotion recognition[J]. Speech Communication, 2022, 139: 62–75. doi: 10.1016/j.specom.2022.02.007.
    [6]
    黄程韦, 赵艳, 金赟, 等. 实用语音情感的特征分析与识别的研究[J]. 电子与信息学报, 2011, 33(1): 112–116. doi: 10.3724/SP.J.1146.2009.00886.

    HUANG Chengwei, ZHAO Yan, JIN Yun, et al. A study on feature analysis and recognition of practical speech emotion[J]. Journal of Electronics & Information Technology, 2011, 33(1): 112–116. doi: 10.3724/SP.J.1146.2009.00886.
    [7]
    杨杨, 詹德川, 姜远, 等. 可靠多模态学习综述[J]. 软件学报, 2021, 32(4): 1067–1081. doi: 10.13328/j.cnki.jos.0061670.

    YANG Yang, ZHAN Dechuan, JIANG Yuan, et al. Reliable multi-modal learning: A survey[J]. Journal of Software, 2021, 32(4): 1067–1081. doi: 10.13328/j.cnki.jos.0061670.
    [8]
    韩卓群. 基于多模态融合的情感识别技术研究与实现[D]. [硕士论文], 山东大学, 2022. doi: 10.27272/d.cnki.gshdu.2022.004451.

    HAN Zhuoqun. Research and implementation of emotion recognition technology based on multimodal fusion[D]. [Master dissertation], Shandong University, 2022. doi: 10.27272/d.cnki.gshdu.2022.004451.
    [9]
    ZADEH A, CHEN Minghai, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]. Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017: 1103–1114. doi: 10.18653/v1/D17-1115.
    [10]
    LIU Zhun, SHEN Ying, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 2247–2256. doi: 10.18653/v1/P18-1209.
    [11]
    MAI Sijie, HU Haifeng, and XING Songlong. Modality to modality translation: An adversarial representation learning and graph fusion network for multimodal fusion[C]. Proceedings of the 34th AAAI Conference on Artificial Intelligence, New York, USA, 2020: 164–172. doi: 10.1609/aaai.v34i01.5347.
    [12]
    WU Yang, LIN Zijie, ZHAO Yanyan, et al. A text-centered shared-private framework via cross-modal prediction for multimodal sentiment analysis[C]. Proceedings of the Findings of the Association for Computational Linguistics, Virtual, 2021: 4730–4738. doi: 10.18653/v1/2021.findings-acl.417.
    [13]
    YU Wenmeng, XU Hua, MENG Fanyang, et al. CH-SIMS: A Chinese multimodal sentiment analysis dataset with fine-grained annotation of modality[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Virtual, 2020: 3718–3727. doi: 10.18653/v1/2020.acl-main.343.
    [14]
    ZADEH A A B, LIANG P P, PORIA S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Australia, 2018: 2236–2246. doi: 10.18653/v1/P18-1208.
    [15]
    BALTRUŠAITIS T, AHUJA C, and MORENCY L P. Multimodal machine learning: A survey and taxonomy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(2): 423–443. doi: 10.1109/TPAMI.2018.2798607.
    [16]
    赵小明, 杨轶娇, 张石清. 面向深度学习的多模态情感识别研究进展[J]. 计算机科学与探索, 2022, 16(7): 1479–1503. doi: 10.3778/j.issn.1673-9418.2112081.

    ZHAO Xiaoming, YANG Yijiao, and ZHANG Shiqing. Survey of deep learning based multimodal emotion recognition[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479–1503. doi: 10.3778/j.issn.1673-9418.2112081.
    [17]
    KAUR R and KAUTISH S. Multimodal sentiment analysis: A survey and comparison[M]. Information Resources Management Association. Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines. IGI Global, 2022: 1846–1870. doi: 10.4018/978-1-6684-6303-1.ch098.
    [18]
    KAUR R and KAUTISH S. Multimodal sentiment analysis: A survey and comparison[J]. International Journal of Service Science Management Engineering and Technology, 2019, 10(2): 38–58. doi: 10.4018/IJSSMET.2019040103.
    [19]
    ZHANG J, XING L, TAN Z, et al. Multi-head attention fusion networks for multi-modal speech emotion recognition[J]. Computers & Industrial Engineering, 2022, 168: 108078. doi: doi: 10.1016/j.cie.2022.108078.
    [20]
    GHOSAL D, AKHTAR S, CHAUHAN D, et al. Contextual inter-modal attention for multi-modal sentiment analysis[C]. Proceedings of 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 3454–3466. doi: 10.18653/v1/D18-1382.
    [21]
    MAI Sijie, HU Haifeng, and XING Songlong. Divide, conquer and combine: Hierarchical feature fusion network with local and global perspectives for multimodal affective computing[C]. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 481–492. doi: 10.18653/v1/P19-1046.
    [22]
    MAI Sijie, XING Songlong, and HU Haifeng. Locally confined modality fusion network with a global perspective for multimodal human affective computing[J]. IEEE Transactions on Multimedia, 2020, 22(1): 122–137. doi: 10.1109/TMM.2019.2925966.
    [23]
    HE Jiaxuan, MAI Sijie, and HU Haifeng. A unimodal reinforced transformer with time squeeze fusion for multimodal sentiment analysis[J]. IEEE Signal Processing Letters, 2021, 28: 992–996. doi: 10.1109/LSP.2021.3078074.
    [24]
    王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111–1118. doi: 10.11999/JEIT210459.

    WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, et al. Multi-interaction graph convolutional networks for aspect-level sentiment analysis[J]. Journal of Electronics & Information Technology, 2022, 44(3): 1111–1118. doi: 10.11999/JEIT210459.
    [25]
    DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]. Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, 2019: 4171–4186. doi: 10.18653/v1/N19-1423.
    [26]
    SIRIWARDHANA S, KALUARACHCHI T, BILLINGHURST M, et al. Multimodal emotion recognition with transformer-based self supervised feature fusion[J]. IEEE Access, 2020, 8: 176274–176285. doi: 10.1109/ACCESS.2020.3026823.
    [27]
    YU Wenmeng, XU Hua, YUAN Ziqi, et al. Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual, 2021: 10790–10797. doi: 10.1609/aaai.v35i12.17289.
    [28]
    WANG Di, GUO Xutong, TIAN Yumin, et al. TETFN: A text enhanced transformer fusion network for multimodal sentiment analysis[J]. Pattern Recognition, 2023, 136: 109259. doi: 10.1016/j.patcog.2022.109259.
    [29]
    ZENG Yufei, LI Zhixin, TANG Zhenjun, et al. Heterogeneous graph convolution based on In-domain Self-supervision for Multimodal Sentiment Analysis[J]. Expert Systems with Applications, 2023, 213: 119240. doi: 10.1016/j.eswa.2022.119240.
    [30]
    HWANG Y and KIM J H. Self-supervised unimodal label generation strategy using recalibrated modality representations for multimodal sentiment analysis[C]. Proceedings of the Findings of the Association for Computational Linguistics, Dubrovnik, Croatia, 2023: 35–46. doi: 10.18653/v1/2023.findings-eacl.2.
    [31]
    CHOI E, BAHADORI M T, KULAS J A, et al. RETAIN: An interpretable predictive model for healthcare using reverse time attention mechanism[C]. Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3512–3520.
    [32]
    WANG Yansen, SHEN Ying, LIU Zhun, et al. Words can shift: Dynamically adjusting word representations using nonverbal behaviors[C]. Proceedings of 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 7216–7223. doi: 10.1609/aaai.v33i01.33017216.
    [33]
    PHAM H, LIANG P P, MANZINI T, et al. Found in translation: Learning robust joint representations by cyclic translations between modalities[C]. Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 6892–6899. doi: 10.1609/aaai.v33i01.33016892.
    [34]
    TSAI Y H H, BAI Shaojie, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]. Proceedings of the 57th Association for Computational Linguistics, Florence, Italy, 2019: 6558. doi: 10.18653/v1/P19-1656.
    [35]
    RAHMAN W, HASAN K, LEE S, et al. Integrating multimodal information in large pretrained transformers[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Virtual, 2020: 2359–2369. doi: 10.18653/v1/2020.acl-main.214.
    [36]
    ZHAO Xianbing, CHEN Yixin, CHEN Yiting, et al. HMAI-BERT: Hierarchical multimodal alignment and interaction network-enhanced BERT for multimodal sentiment analysis[C]. Proceedings of 2022 IEEE International Conference on Multimedia and Expo, Taipei, China, 2022: 1–6. doi: 10.1109/ICME52920.2022.9859747.
    [37]
    HAZARIKA D, ZIMMERMANN R, and PORIA S. MISA: Modality-invariant and-specific representations for multimodal sentiment analysis[C]. Proceedings of the 28th ACM International Conference on Multimedia, Seattle, United States, 2020: 1122–1131. doi: 10.1145/3394171.3413678.
    [38]
    HAN Wei, CHEN Hui, and PORIA S. Improving multimodal fusion with hierarchical mutual information maximization for multimodal sentiment analysis[C]. Proceedings of Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 2021: 9180–9192. doi: 10.18653/v1/2021.emnlp-main.723.
    [39]
    YU Yakun, ZHAO Mingjun, QI Shiang, et al. ConKI: Contrastive knowledge injection for multimodal sentiment analysis[C]. Proceedings of the Findings of the Association for Computational Linguistics, Toronto, Canada, 2023: 13610–13624. doi: 10.18653/v1/2023.findings-acl.860.
    [40]
    XIE Jinbao, WANG Jiyu, WANG Qingyan, et al. A multimodal fusion emotion recognition method based on multitask learning and attention mechanism[J]. Neurocomputing, 2023, 556: 126649. doi: 10.1016/j.neucom.2023.126649.
    [41]
    YANG Bo, SHAO Bo, WU Lijun, et al. Multimodal sentiment analysis with unidirectional modality translation[J]. Neurocomputing, 2022, 467: 130–137. doi: 10.1016/j.neucom.2021.09.041.
    [42]
    LAI Songning, HU Xifeng, LI Yulong, et al. Shared and private information learning in multimodal sentiment analysis with deep modal alignment and self-supervised multi-task learning[J]. arXiv preprint arXiv: 2305.08473, 2023.
    [43]
    YANG Bo, WU Lijun, ZHU Jinhua, et al. Multimodal sentiment analysis with two-phase multi-task learning[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30: 2015–2024. doi: 10.1109/TASLP.2022.3178204.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(10)

    Article Metrics

    Article views (511) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return