| Citation: | YU Jun, MA Jiangtao, XIAN Yang, HOU Ruixia, SUN Wei. Semi-paired Multi-modal Query Hashing Method[J]. Journal of Electronics & Information Technology, 2024, 46(2): 481-491. doi: 10.11999/JEIT231072 | 
 
	                | [1] | GEETHA V and SUJATHA N. A survey on divergent classification of social media networking[C]. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2022: 203–207. doi:  10.1109/ICCCIS56430.2022.10037606. | 
| [2] | 顾广华, 霍文华, 苏明月, 等. 基于非对称监督深度离散哈希的图像检索[J]. 电子与信息学报, 2021, 43(12): 3530–3537. doi:  10.11999/JEIT200988. GU Guanghua, HUO Wenhua, SU Mingyue,  et al. Asymmetric supervised deep discrete hashing based image retrieval[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3530–3537. doi:  10.11999/JEIT200988. | 
| [3] | GONG Yunchao, LAZEBNIK S, GORDO A,  et al. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916–2929. doi:  10.1109/TPAMI.2012.193. | 
| [4] | DATAR M, IMMORLICA N, INDYK P,    et al. Locality-sensitive hashing scheme based on p-stable distributions[C]. The 20th Annual Symposium on Computational Geometry, Brooklyn, USA, 2004: 253–262. doi:  10.1145/997817.997857. | 
| [5] | SHEN Fumin, SHEN Chunhua, LIU Wei,    et al. Supervised discrete hashing[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 37–45. doi:  10.1109/CVPR.2015.7298598. | 
| [6] | JI Rongrong, LIU Hong, CAO Liujuan,  et al. Toward optimal manifold hashing via discrete locally linear embedding[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5411–5420. doi:  10.1109/TIP.2017.2735184. | 
| [7] | KOUTAKI G, SHIRAI K, and AMBAI M. Hadamard coding for supervised discrete hashing[J]. IEEE Transactions on Image Processing, 2018, 27(11): 5378–5392. doi:  10.1109/TIP.2018.2855427. | 
| [8] | LIN Mingbao, JI Rongrong, LIU Hong,    et al. Supervised online hashing via hadamard codebook learning[C]. The 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 2018: 1635–1643. doi:  10.1145/3240508.3240519. | 
| [9] | LIN Mingbao, JI Rongrong, CHEN Shen,  et al. Similarity-preserving linkage hashing for online image retrieval[J]. IEEE Transactions on Image Processing, 2020, 29: 5289–5300. doi:  10.1109/TIP.2020.2981879. | 
| [10] | JIN Lu, LI Zechao, PAN Yonghua,    et al. Weakly-supervised image hashing through masked visual-semantic graph-based reasoning[C]. The 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 916–924. doi:  10.1145/3394171.3414022. | 
| [11] | LI Zechao, TANG Jinhui, ZHANG Liyan,  et al. Weakly-supervised semantic guided hashing for social image retrieval[J]. International Journal of Computer Vision, 2020, 128(8/9): 2265–2278. doi:  10.1007/s11263-020-01331-0. | 
| [12] | SONG Jingkuan, YANG Yi, HUANG Zi,  et al. Effective multiple feature hashing for large-scale near-duplicate video retrieval[J]. IEEE Transactions on Multimedia, 2013, 15(8): 1997–2008. doi:  10.1109/TMM.2013.2271746. | 
| [13] | SHEN Xiaobo, SHEN Fumin, SUN Quansen,    et al. Multi-view latent hashing for efficient multimedia search[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 831–834. doi:  10.1145/2733373.2806342. | 
| [14] | LIU Li, YU Mengyang, and SHAO Ling. Multiview alignment hashing for efficient image search[J]. IEEE Transactions on Image Processing, 2015, 24(3): 956–966. doi:  10.1109/TIP.2015.2390975. | 
| [15] | LU Xu, LIU Li, NIE Liqiang,  et al. Semantic-driven interpretable deep multi-modal hashing for large-scale multimedia retrieval[J]. IEEE Transactions on Multimedia, 2021, 23: 4541–4554. doi:  10.1109/TMM.2020.3044473. | 
| [16] | YU Jun, HUANG Wei, LI Zuhe,  et al. Hadamard matrix-guided multi-modal hashing for multi-modal retrieval[J]. Digital Signal Processing, 2022, 130: 103743. doi:  10.1016/j.dsp.2022.103743. | 
| [17] | 庾骏, 黄伟, 张晓波, 等. 基于松弛Hadamard矩阵的多模态融合哈希方法[J]. 电子学报, 2022, 50(4): 909–920. doi:  10.12263/DZXB.20210760. YU Jun, HUANG Wei, ZHANG Xiaobo,  et al. Multimodal fusion hash learning method based on relaxed Hadamard matrix[J]. Acta Electronica Sinica, 2022, 50(4): 909–920. doi:  10.12263/DZXB.20210760. | 
| [18] | LU Xu, ZHU Lei, CHENG Zhiyong,    et al. Online multi-modal hashing with dynamic query-adaption[C]. The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 2019: 715–724. doi:  10.1145/3331184.3331217. | 
| [19] | YU Jun, ZHANG Donglin, SHU Zhenqiu,  et al. Adaptive multi-modal fusion hashing via hadamard matrix[J]. Applied Intelligence, 2022, 52(15): 17170–17184. doi:  10.1007/s10489-022-03367-w. | 
| [20] | SHEN Xiaobo, SUN Quansen, and YUAN Yunhao. Semi-paired hashing for cross-view retrieval[J]. Neurocomputing, 2016, 213: 14–23. doi:  10.1016/j.neucom.2016.01.121. | 
| [21] | WANG Di, SHANG Bin, WANG Quan,  et al. Semi-paired and semi-supervised multimodal hashing via cross-modality label propagation[J]. Multimedia Tools and Applications, 2019, 78(17): 24167–24185. doi:  10.1007/s11042-018-6858-8. | 
| [22] | GAO Jing, ZHANG Wenjun, ZHONG Fangming,  et al. UCMH: Unpaired cross-modal hashing with matrix factorization[J]. Neurocomputing, 2020, 418: 178–190. doi:  10.1016/j.neucom.2020.08.029. | 
| [23] | JING Rongrong, TIAN Hu, ZHANG Xingwei,    et al. Self-Training based semi-Supervised and semi-Paired hashing cross-modal retrieval[C]. 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022: 1–8. doi:  10.1109/IJCNN55064.2022.9892301. | 
| [24] | RASHTCHIAN C, YOUNG P, HODOSH M,    et al. Collecting image annotations using amazon’s mechanical Turk[C]. The NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, Los Angeles, America, 2010: 139–147. | 
| [25] | CHUA T S, TANG Jinhui, HONG Richang,    et al. NUS-WIDE: A real-world web image database from national university of Singapore[C]. The ACM International Conference on Image and Video Retrieval, Santorini, Greece, 2009: 48. doi:  10.1145/1646396.1646452. | 
| [26] | ESCALANTE H J, HERNÁNDEZ C A, GONZALEZ J A,  et al. The segmented and annotated IAPR TC-12 benchmark[J]. Computer Vision and Image Understanding, 2010, 114(4): 419–428. doi:  10.1016/j.cviu.2009.03.008. | 
| [27] | WANG Daixin, CUI Peng, OU Mingdong,    et al. Deep multimodal hashing with orthogonal regularization[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 2291–2297. | 
| [28] | YANG Rui, SHI Yuliang, and XU Xinshun. Discrete multi-view hashing for effective image retrieval[C]. 2017 ACM on International Conference on Multimedia Retrieval, Bucharest, Romania, 2017: 175–183. doi:  10.1145/3078971.3078981. | 
| [29] | LU Xu, ZHU Lei, LIU Li,    et al. Graph convolutional multi-modal hashing for flexible multimedia retrieval[C/OL]. The 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 1414–1422. doi:  10.1145/3474085.3475598. | 
