Citation: | YU Jun, MA Jiangtao, XIAN Yang, HOU Ruixia, SUN Wei. Semi-paired Multi-modal Query Hashing Method[J]. Journal of Electronics & Information Technology, 2024, 46(2): 481-491. doi: 10.11999/JEIT231072 |
[1] |
GEETHA V and SUJATHA N. A survey on divergent classification of social media networking[C]. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 2022: 203–207. doi: 10.1109/ICCCIS56430.2022.10037606.
|
[2] |
顾广华, 霍文华, 苏明月, 等. 基于非对称监督深度离散哈希的图像检索[J]. 电子与信息学报, 2021, 43(12): 3530–3537. doi: 10.11999/JEIT200988.
GU Guanghua, HUO Wenhua, SU Mingyue, et al. Asymmetric supervised deep discrete hashing based image retrieval[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3530–3537. doi: 10.11999/JEIT200988.
|
[3] |
GONG Yunchao, LAZEBNIK S, GORDO A, et al. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916–2929. doi: 10.1109/TPAMI.2012.193.
|
[4] |
DATAR M, IMMORLICA N, INDYK P, et al. Locality-sensitive hashing scheme based on p-stable distributions[C]. The 20th Annual Symposium on Computational Geometry, Brooklyn, USA, 2004: 253–262. doi: 10.1145/997817.997857.
|
[5] |
SHEN Fumin, SHEN Chunhua, LIU Wei, et al. Supervised discrete hashing[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 37–45. doi: 10.1109/CVPR.2015.7298598.
|
[6] |
JI Rongrong, LIU Hong, CAO Liujuan, et al. Toward optimal manifold hashing via discrete locally linear embedding[J]. IEEE Transactions on Image Processing, 2017, 26(11): 5411–5420. doi: 10.1109/TIP.2017.2735184.
|
[7] |
KOUTAKI G, SHIRAI K, and AMBAI M. Hadamard coding for supervised discrete hashing[J]. IEEE Transactions on Image Processing, 2018, 27(11): 5378–5392. doi: 10.1109/TIP.2018.2855427.
|
[8] |
LIN Mingbao, JI Rongrong, LIU Hong, et al. Supervised online hashing via hadamard codebook learning[C]. The 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 2018: 1635–1643. doi: 10.1145/3240508.3240519.
|
[9] |
LIN Mingbao, JI Rongrong, CHEN Shen, et al. Similarity-preserving linkage hashing for online image retrieval[J]. IEEE Transactions on Image Processing, 2020, 29: 5289–5300. doi: 10.1109/TIP.2020.2981879.
|
[10] |
JIN Lu, LI Zechao, PAN Yonghua, et al. Weakly-supervised image hashing through masked visual-semantic graph-based reasoning[C]. The 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 916–924. doi: 10.1145/3394171.3414022.
|
[11] |
LI Zechao, TANG Jinhui, ZHANG Liyan, et al. Weakly-supervised semantic guided hashing for social image retrieval[J]. International Journal of Computer Vision, 2020, 128(8/9): 2265–2278. doi: 10.1007/s11263-020-01331-0.
|
[12] |
SONG Jingkuan, YANG Yi, HUANG Zi, et al. Effective multiple feature hashing for large-scale near-duplicate video retrieval[J]. IEEE Transactions on Multimedia, 2013, 15(8): 1997–2008. doi: 10.1109/TMM.2013.2271746.
|
[13] |
SHEN Xiaobo, SHEN Fumin, SUN Quansen, et al. Multi-view latent hashing for efficient multimedia search[C]. The 23rd ACM International Conference on Multimedia, Brisbane, Australia, 2015: 831–834. doi: 10.1145/2733373.2806342.
|
[14] |
LIU Li, YU Mengyang, and SHAO Ling. Multiview alignment hashing for efficient image search[J]. IEEE Transactions on Image Processing, 2015, 24(3): 956–966. doi: 10.1109/TIP.2015.2390975.
|
[15] |
LU Xu, LIU Li, NIE Liqiang, et al. Semantic-driven interpretable deep multi-modal hashing for large-scale multimedia retrieval[J]. IEEE Transactions on Multimedia, 2021, 23: 4541–4554. doi: 10.1109/TMM.2020.3044473.
|
[16] |
YU Jun, HUANG Wei, LI Zuhe, et al. Hadamard matrix-guided multi-modal hashing for multi-modal retrieval[J]. Digital Signal Processing, 2022, 130: 103743. doi: 10.1016/j.dsp.2022.103743.
|
[17] |
庾骏, 黄伟, 张晓波, 等. 基于松弛Hadamard矩阵的多模态融合哈希方法[J]. 电子学报, 2022, 50(4): 909–920. doi: 10.12263/DZXB.20210760.
YU Jun, HUANG Wei, ZHANG Xiaobo, et al. Multimodal fusion hash learning method based on relaxed Hadamard matrix[J]. Acta Electronica Sinica, 2022, 50(4): 909–920. doi: 10.12263/DZXB.20210760.
|
[18] |
LU Xu, ZHU Lei, CHENG Zhiyong, et al. Online multi-modal hashing with dynamic query-adaption[C]. The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 2019: 715–724. doi: 10.1145/3331184.3331217.
|
[19] |
YU Jun, ZHANG Donglin, SHU Zhenqiu, et al. Adaptive multi-modal fusion hashing via hadamard matrix[J]. Applied Intelligence, 2022, 52(15): 17170–17184. doi: 10.1007/s10489-022-03367-w.
|
[20] |
SHEN Xiaobo, SUN Quansen, and YUAN Yunhao. Semi-paired hashing for cross-view retrieval[J]. Neurocomputing, 2016, 213: 14–23. doi: 10.1016/j.neucom.2016.01.121.
|
[21] |
WANG Di, SHANG Bin, WANG Quan, et al. Semi-paired and semi-supervised multimodal hashing via cross-modality label propagation[J]. Multimedia Tools and Applications, 2019, 78(17): 24167–24185. doi: 10.1007/s11042-018-6858-8.
|
[22] |
GAO Jing, ZHANG Wenjun, ZHONG Fangming, et al. UCMH: Unpaired cross-modal hashing with matrix factorization[J]. Neurocomputing, 2020, 418: 178–190. doi: 10.1016/j.neucom.2020.08.029.
|
[23] |
JING Rongrong, TIAN Hu, ZHANG Xingwei, et al. Self-Training based semi-Supervised and semi-Paired hashing cross-modal retrieval[C]. 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 2022: 1–8. doi: 10.1109/IJCNN55064.2022.9892301.
|
[24] |
RASHTCHIAN C, YOUNG P, HODOSH M, et al. Collecting image annotations using amazon’s mechanical Turk[C]. The NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk, Los Angeles, America, 2010: 139–147.
|
[25] |
CHUA T S, TANG Jinhui, HONG Richang, et al. NUS-WIDE: A real-world web image database from national university of Singapore[C]. The ACM International Conference on Image and Video Retrieval, Santorini, Greece, 2009: 48. doi: 10.1145/1646396.1646452.
|
[26] |
ESCALANTE H J, HERNÁNDEZ C A, GONZALEZ J A, et al. The segmented and annotated IAPR TC-12 benchmark[J]. Computer Vision and Image Understanding, 2010, 114(4): 419–428. doi: 10.1016/j.cviu.2009.03.008.
|
[27] |
WANG Daixin, CUI Peng, OU Mingdong, et al. Deep multimodal hashing with orthogonal regularization[C]. The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015: 2291–2297.
|
[28] |
YANG Rui, SHI Yuliang, and XU Xinshun. Discrete multi-view hashing for effective image retrieval[C]. 2017 ACM on International Conference on Multimedia Retrieval, Bucharest, Romania, 2017: 175–183. doi: 10.1145/3078971.3078981.
|
[29] |
LU Xu, ZHU Lei, LIU Li, et al. Graph convolutional multi-modal hashing for flexible multimedia retrieval[C/OL]. The 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 1414–1422. doi: 10.1145/3474085.3475598.
|