Citation: | LI Junhui, HOU Xingsong. Pseudo Supervised Attention Short-term Memory and Multi-Scale Deartifacting Network Based on Image Block Compressed Sensing[J]. Journal of Electronics & Information Technology, 2024, 46(2): 472-480. doi: 10.11999/JEIT231069 |
[1] |
HOU Hao, SHAO Yuchen, GENG Yang, et al. PNCS: Pixel-level non-local method based compressed sensing undersampled MRI image reconstruction[J]. IEEE Access, 2023, 11: 42389–42402. doi: 10.1109/ACCESS.2023.3270900.
|
[2] |
王洋, 杨孟宇, 赵首博. 基于自适应分块的高光谱图像压缩感知重构方法[J]. 电子与信息学报, 2023, 45(7): 2605–2613. doi: 10.11999/JEIT220738.
WANG Yang, YANG Mengyu, and ZHAO Shoubo. Compressed sensing reconstruction of hyperspectral images based on adaptive blocking[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2605–2613. doi: 10.11999/JEIT220738.
|
[3] |
LIU Yang, YUAN Xin, SUO Jinli, et al. Rank minimization for snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(12): 2990–3006. doi: 10.1109/TPAMI.2018.2873587.
|
[4] |
TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108.
|
[5] |
BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi: 10.1137/080716542.
|
[6] |
METZLER C A, MOUSAVI A, and BARANIUK R. Learned D-AMP: Principled neural network based compressive image recovery[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1770–1781. doi: 10.5555/3294771.3294940.
|
[7] |
MOUSAVI A, PATEL A B, and BARANIUK R G. A deep learning approach to structured signal recovery[C]. The 53rd Annual Allerton Conference on Communication, Control, and Computing, Monticello, USA, 2015: 1336–1343. doi: 10.1109/ALLERTON.2015.7447163.
|
[8] |
KULKARNI K, LOHIT S, TURAGA P, et al. ReconNet: Non-iterative reconstruction of images from compressively sensed measurements[C]. IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 449–458. doi: 10.1109/CVPR.2016.55.
|
[9] |
GAN Hongping, SHEN Minghe, HUA Yi, et al. From patch to pixel: A transformer-based hierarchical framework for compressive image sensing[J]. IEEE Transactions on Computational Imaging, 2023, 9: 133–146. doi: 10.1109/TCI.2023.3244396.
|
[10] |
LIU Ze, LIN Yutong, GAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. IEEE International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
|
[11] |
ZHANG Jian, CHEN Bin, XIONG Ruiqin, et al. Physics-inspired compressive sensing: Beyond deep unrolling[J]. IEEE Signal Processing Magazine, 2023, 40(1): 58–72. doi: 10.1109/MSP.2022.3208394.
|
[12] |
ZHANG Jian and GHANEM B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing[C]. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1828–1837. doi: 10.1109/CVPR.2018.00196.
|
[13] |
ZHANG Jian, ZHAO Chen, and GAO Wen. Optimization-inspired compact deep compressive sensing[J]. IEEE Journal of Selected Topics in Signal Processing. 2020, 14(4): 765–774. doi: 10.1109/JSTSP.2020.2977507.
|
[14] |
ZHANG Zhonghao, LIU Yipeng, LIU Jiani, et al. AMP-Net: Denoising-based deep unfolding for compressive image sensing[J]. IEEE Transactions on Image Processing, 2021, 30: 1487–1500. doi: 10.1109/TIP.2020.3044472.
|
[15] |
CHEN Chang, XIONG Zhiwei, TIAN Xinmei, et al. Real-world image denoising with deep boosting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(12): 3071–3087. doi: 10.1109/TPAMI.2019.2921548.
|
[16] |
MA Jiayi, PENG Chengli, TIAN Xin, et al. DBDnet: A deep boosting strategy for image denoising[J]. IEEE Transactions on Multimedia, 2022, 24: 3157–3168. doi: 10.1109/TMM.2021.3094058.
|
[17] |
SHEN Minghe, GAN Hongping, NING Chao, et al. TransCS: A transformer-based hybrid architecture for image compressed sensing[J]. IEEE Transactions on Image Processing, 2022, 31: 6991–7005. doi: 10.1109/TIP.2022.3217365.
|
[18] |
CUI Wenxue, LIU Shaohui, JIANG Feng, et al. Image compressed sensing using non-local neural network[J]. IEEE Transactions on Multimedia, 2023, 25: 816–830. doi: 10.1109/TMM.2021.3132489.
|
[19] |
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206.
|
[20] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. 18th International Conference, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
[21] |
WANG Huake, LI Ziang, and HOU Xingsong. Versatile denoising-based approximate message passing for compressive sensing[J]. IEEE Transactions on Image Processing, 2023, 32: 2761–2775. doi: 10.1109/TIP.2023.3274967.
|
[22] |
LIU Pengju, ZHANG Hongzhi, ZHANG Kai, et al. Multi-level wavelet-CNN for image restoration[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 886. doi: 10.1109/CVPRW.2018.00121.
|
[23] |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. 8th IEEE International Conference on Computer Vision, Vancouver, Canada, 2001: 416–423. doi: 10.1109/ICCV.2001.937655.
|
[24] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861.
|
[25] |
LOSHCHILOV I and HUTTER F. Decoupled weight decay regularization[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|