| Citation: | YUN Tao, PAN Quan, LIU Lei, BAI Xianglong, LIU Hong. A Class Incremental Learning Algorithm with Dual Separation of Data Flow and Feature Space for Various Classes[J]. Journal of Electronics & Information Technology, 2024, 46(10): 3879-3889. doi: 10.11999/JEIT231064 | 
 
	                | [1] | ZHU Kai, ZHAI Wei, CAO Yang,    et al. Self-sustaining representation expansion for non-exemplar class-incremental learning[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 9286–9295. doi:  10.1109/CVPR52688.2022.00908. | 
| [2] | LI Zhizhong and HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935–2947. doi:  10.1109/TPAMI.2017.2773081. | 
| [3] | DOUILLARD A, CORD M, OLLION C,    et al. PODNet: Pooled outputs distillation for small-tasks incremental learning[C]. The 16th European Conference, Glasgow, UK, 2020: 86–102. doi:  10.1007/978-3-030-58565-5_6. | 
| [4] | REBUFFI S A, KOLESNIKOV A, SPERL G,    et al. iCaRL: Incremental classifier and representation learning[C]. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2017: 2001–2010. doi:  10.1109/CVPR.2017.587. | 
| [5] | 曲志昱, 李根, 邓志安. 基于知识蒸馏与注意力图的雷达信号识别方法[J]. 电子与信息学报, 2022, 44(9): 3170–3177. doi:  10.11999/JEIT210695. QU Zhiyu, LI Gen, and DENG Zhian. Radar signal recognition method based on knowledge distillation and attention map[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3170–3177. doi:  10.11999/JEIT210695. | 
| [6] | ISCEN A, ZHANG J, LAZEBNIK S,    et al. Memory-efficient incremental learning through feature adaptation[C]. Proceedings of the 16th European Conference, Glasgow, UK, 2020: 699–715. doi:  10.1007/978-3-030-58517-4_41. | 
| [7] | PELLEGRINI L, GRAFFIETI G, LOMONACO V,    et al. Latent replay for real-time continual learning[C]. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA, 2020: 10203–10209. doi:  10.1109/IROS45743.2020.9341460. | 
| [8] | YIN Hongxu, MOLCHANOV P, ALVAREZ J M,    et al. Dreaming to distill: Data-free knowledge transfer via DeepInversion[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8715–8724. doi:  10.1109/CVPR42600.2020.00874. | 
| [9] | SHEN Gehui, ZHANG Song, CHEN Xiang,    et al. Generative feature replay with orthogonal weight modification for continual learning[C]. 2021 International Joint Conference on Neural Networks, Shenzhen, China, 2021: 1–8. doi:  10.1109/IJCNN52387.2021.9534437. | 
| [10] | WU Yue, CHEN Yinpeng, WANG Lijuan,    et al. Large scale incremental learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 374–382. doi:  10.1109/CVPR.2019.00046. | 
| [11] | LIU Yaoyao, SCHIELE B, and SUN Qianru. Adaptive aggregation networks for class-incremental learning[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2544–2553. doi:  10.1109/CVPR46437.2021.00257. | 
| [12] | CHEN Long, WANG Fei, YANG Ruijing, et al. Representation learning from noisy user-tagged data for sentiment classification[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(12): 3727–3742. doi:  10.1007/s13042-022-01622-7. | 
| [13] | ZHOU Dawei, YE Hanjia, and ZHAN Dechuan. Co-transport for class-incremental learning[C]. The 29th ACM International Conference on Multimedia, Chengdu, China, 2021: 1645–1654. doi:  10.1145/3474085.3475306. | 
| [14] | WANG Fuyun, ZHOU Dawei, YE Hanjia,    et al. FOSTER: Feature boosting and compression for class-incremental learning[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 398–414. doi:  10.1007/978-3-031-19806-9_23. | 
| [15] | ZHAO Bowen, XIAO Xi, GAN Guojun,    et al. Maintaining discrimination and fairness in class incremental learning[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13208–13217. doi:  10.1109/CVPR42600.2020.01322. | 
| [16] | ZHOU Dawei, WANG Fuyun, YE Hanjia, et al. PyCIL: A python toolbox for class-incremental learning[J]. Science China Information Sciences, 2023, 66(9): 197101. doi:  10.1007/s11432-022-3600-y. | 
