Citation: | LI Xiaoling, CHEN Houjin, LI Yanfeng, SUN Jia, WANG Minjun, CHEN Luyifu. Infrared and Visible Image Fusion Network with Multi-Relation Perception[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2217-2227. doi: 10.11999/JEIT231062 |
[1] |
杨莘, 田立凡, 梁佳明, 等. 改进双路径生成对抗网络的红外与可见光图像融合[J]. 电子与信息学报, 2023, 45(8): 3012–3021. doi: 10.11999/JEIT220819.
YANG Shen, TIAN Lifan, LIANG Jiaming, et al. Infrared and visible image fusion based on improved dual path generation adversarial network[J]. Journal of Electronics & Information Technology, 2023, 45(8): 3012–3021. doi: 10.11999/JEIT220819.
|
[2] |
高绍兵, 詹宗逸, 匡梅. 视觉多通路机制启发的多场景感知红外与可见光图像融合框架[J]. 电子与信息学报, 2023, 45(8): 2749–2758. doi: 10.11999/JEIT221361.
GAO Shaobing, ZHAN Zongyi, and KUANG Mei. Multi-scenario aware infrared and visible image fusion framework based on visual multi-pathway mechanism[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2749–2758. doi: 10.11999/JEIT221361.
|
[3] |
XU Guoxia, HE Chunming, WANG Hao, et al. DM-Fusion: Deep model-driven network for heterogeneous image fusion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023: 1–15. doi: 10.1109/TNNLS.2023.3238511.
|
[4] |
MA Jiayi, YU Wei, LIANG Pengwei, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11–26. doi: 10.1016/j.inffus.2018.09.004.
|
[5] |
TANG Wei, HE Fazhi, and LIU Yu. YDTR: Infrared and visible image fusion via Y-shape dynamic transformer[J]. IEEE Transactions on Multimedia, 2023, 25: 5413–5428. doi: 10.1109/TMM.2022.3192661.
|
[6] |
LI Hui and WU Xiaojun. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614–2623. doi: 10.1109/TIP.2018.2887342.
|
[7] |
XU Han, ZHANG Hao, and MA Jiayi. Classification saliency-based rule for visible and infrared image fusion[J]. IEEE Transactions on Computational Imaging, 2021, 7: 824–836. doi: 10.1109/TCI.2021.3100986.
|
[8] |
QU Linhao, LIU Shaolei, WANG Manning, et al. TransMEF: A transformer-based multi-exposure image fusion framework using self-supervised multi-task learning[C]. The 36th AAAI Conference on Artificial Intelligence, Tel Aviv, Israel, 2022: 2126–2134. doi: 10.1609/aaai.v36i2.20109.
|
[9] |
QU Linhao, LIU Shaolei, WANG Manning, et al. TransFuse: A unified transformer-based image fusion framework using self-supervised learning[EB/OL]. https://arxiv.org/abs/2201.07451, 2022. doi: 10.48550/arXiv.2201.07451.
|
[10] |
LI Hui, WU Xiaojun, and KITTLER J. RFN-Nest: An end-to-end residual fusion network for infrared and visible images[J]. Information Fusion, 2021, 73: 72–86. doi: 10.1016/j.inffus.2021.02.023.
|
[11] |
LI Junwu, LI Binhua, JIANG Yaoxi, et al. MrFDDGAN: Multireceptive field feature transfer and dual discriminator-driven generative adversarial network for infrared and color visible image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5006228. doi: 10.1109/TIM.2023.3241999.
|
[12] |
HOU Qibin, ZHOU Daquan, and FENG Jiashi. Coordinate attention for efficient mobile network design[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13708–13717. doi: 10.1109/cvpr46437.2021.01350.
|
[13] |
ZHANG Pengyu, ZHAO Jie, WANG Dong, et al. Visible-thermal UAV tracking: A large-scale benchmark and new baseline[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8876–8885. doi: 10.1109/cvpr52688.2022.00868.
|
[14] |
LIU Jinyuan, FAN Xin, HUANG Zhanbo, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 5792–5801. doi: 10.1109/cvpr52688.2022.00571.
|
[15] |
MA Jiayi, TANG Linfeng, FAN Fan, et al. SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(7): 1200–1217. doi: 10.1109/JAS.2022.105686.
|
[16] |
LUO Xing, FU Guizhong, YANG Jiangxin, et al. Multi-modal image fusion via deep laplacian pyramid hybrid network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(12): 7354–7369. doi: 10.1109/TCSVT.2023.3281462.
|
[17] |
CHENG Chunyang, XU Tianyang, and WU Xiaojun. MUFusion: A general unsupervised image fusion network based on memory unit[J]. Information Fusion, 2023, 92: 80–92. doi: 10.1016/j.inffus.2022.11.010.
|
[18] |
LIU Risheng, LIU Zhu, LIU Jinyuan, et al. A task-guided, implicitly-searched and meta-initialized deep model for image fusion[EB/OL].https://arxiv.org/abs/2305.15862, 2023. doi: 10.48550/arXiv.2305.15862.
|
[19] |
LIU Jinyuan, LIN Runjia, WU Guanyao, et al. CoCoNet: Coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion[J]. International Journal of Computer Vision, 2023. doi: 10.1007/s11263-023-01952-1.
|
[20] |
ZHAO Yangyang, ZHENG Qingchun, ZHU Peihao, et al. TUFusion: A transformer-based universal fusion algorithm for multimodal images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(3): 1712–1725. doi: 10.1109/TCSVT.2023.3296745.
|
[21] |
QU Guihong, ZHANG Dali, YAN Pingfan, et al. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313–315. doi: 10.1049/el:20020212.
|
[22] |
ZHAO Jiying, LAGANIERE R, and LIU Zheng. Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement[J]. International Journal of Innovative Computing, Information and Control, 2007, 3(6(A)): 1433–1447.
|
[23] |
PIELLA G and HEIJMANS H. A new quality metric for image fusion[C]. The 2003 International Conference on Image Processing, Barcelona, Spain, 2003: 173–176. doi: 10.1109/ICIP.2003.1247209.
|
[24] |
CHEN Hao and VARSHNEY P K. A human perception inspired quality metric for image fusion based on regional information[J]. Information Fusion, 2007, 8(2): 193–207. doi: 10.1016/j.inffus.2005.10.001.
|
[25] |
ZHANG Xingchen. Deep learning-based multi-focus image fusion: A survey and a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4819–4838. doi: 10.1109/TPAMI.2021.3078906.
|