Citation: | YU Hong, LIU Qinrang, WEI Shuai, LAN Julong. Executer Synchronization in Highly Reliable Information System with Dissimilar Redundancy Architecture[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2122-2136. doi: 10.11999/JEIT231048 |
[1] |
STAMP M. Risks of monoculture[J]. Communications of the ACM, 2004, 47(3): 120. doi: 10.1145/971617.971650.
|
[2] |
王刚, 冯云, 陆世伟, 等. 多操作系统异构网络的病毒传播模型和安全性能优化策略[J]. 电子与信息学报, 2020, 42(4): 972–980. doi: 10.11999/JEIT190360.
WANG Gang, FENG Yun, LU Shiwei, et al. Virus propagation model and security performance optimization strategy of multi-operating system heterogeneous network[J]. Journal of Electronics & Information Technology, 2020, 42(4): 972–980. doi: 10.11999/JEIT 190360.
|
[3] |
杜三, 舒辉, 康绯. 基于硬件的动态指令集随机化框架的设计与实现[J]. 网络与信息安全学报, 2017, 3(11): 29–39. doi: 10.11959/j.issn.2096-109x.2017.00216.
DU San, SHU Hui, and KANG Fei. Design and implementation of hardware-based dynamic instruction set randomization framework[J]. Chinese Journal of Network and Information Security, 2017, 3(11): 29–39. doi: 10.11959/j.issn.2096-109x.2017.00216.
|
[4] |
CHRISTOU G, VASILIADIS G, PAPAEFSTATHIOU V, et al. On architectural support for instruction set randomization[J]. ACM Transactions on Architecture and Code Optimization, 2020, 17(4): 36. doi: 10.1145/3419841.
|
[5] |
张贵民, 李清宝, 曾光裕, 等. 运行时代码随机化防御代码复用攻击[J]. 软件学报, 2019, 30(9): 2772–2790. doi: 10.13328/j.cnki.jos.005516.
ZHANG Guimin, LI Qingbao, ZENG Guangyu, et al. Defensing code reuse attacks using live code randomization[J]. Journal of Software, 2019, 30(9): 2772–2790. doi: 10.13328/j.cnki.jos.005516.
|
[6] |
何红旗, 王奕森, 董卫宇, 等. 基于编译置换的指令随机化系统设计与实现[J]. 计算机应用与软件, 2017, 34(12): 313–320. doi: 10.3969/j.issn.1000-386x.2017.12.059.
HE Hongqi, WANG Yisen, DONG Weiyu, et al. Design and implementation of instruction randomization based on compiling substitution[J]. Computer Applications and Software, 2017, 34(12): 313–320. doi: 10.3969/j.issn.1000-386x.2017.12.059.
|
[7] |
KIL C, JUN J, BOOKHOLT C, et al. Address space layout permutation (ASLP): Towards fine-grained randomization of commodity software[C]. The 22nd Annual Computer Security Applications Conference, Miami Beach, USA, 2006: 339–348. doi: 10.1109/ACSAC.2006.9.
|
[8] |
WANG Ye, LI Qingbao, CHEN Zhifeng, et al. Shapeshifter: Intelligence-driven data plane randomization resilient to data-oriented programming attacks[J]. Computers & Security, 2020, 89: 101679. doi: 10.1016/j.cose.2019.101679.
|
[9] |
侯尚文, 黄建军, 梁彬, 等. 一种基于实时代码装卸载的代码重用攻击防御方法[J]. 计算机科学, 2022, 49(10): 279–284. doi: 10.11896/jsjkx.220500091.
HOU Shangwen, HUANG Jianjun, LIANG Bin, et al. Defense method against code reuse attack based on real-time code loading and unloading[J]. Computer Science, 2022, 49(10): 279–284. doi: 10.11896/jsjkx.220500091.
|
[10] |
BERGER E D and ZORN B G. DieHard: Probabilistic memory safety for unsafe languages[C]. The 27th ACM SIGPLAN Conference on Programming Language Design and Implementation, Ottawa, Canada, 2006. doi: 10.1145/1133981.1134000.
|
[11] |
马博林, 张铮, 陈源, 等. 基于指令集随机化的抗代码注入攻击方法[J]. 信息安全学报, 2020, 5(4): 30–43. doi: 10.19363/J.cnki.cn10-1380/tn.2020.07.03.
MA Bolin, ZHANG Zheng, CHEN Yuan, et al. The defense method for code-injection attacks based on instruction set randomization[J]. Journal of Cyber Security, 2020, 5(4): 30–43. doi: 10.19363/J.cnki.cn10-1380/tn.2020.07.03.
|
[12] |
张宇嘉, 庞建民, 张铮, 等. 基于软件多样化的拟态安全防御策略[J]. 计算机科学, 2018, 45(2): 215–221. doi: 10.11896/j.issn.1002-137X.2018.02.037.
ZHANG Yujia, PANG Jianmin, ZHANG Zheng, et al. Mimic security defence strategy based on software diversity[J]. Computer Science, 2018, 45(2): 215–221. doi: 10.11896/j.issn.1002-137X.2018.02.037.
|
[13] |
姚东, 张铮, 张高斐, 等. MVX-CFI: 一种实用的软件安全主动防御架构[J]. 信息安全学报, 2020, 5(4): 44–54. doi: 10.19363/J.cnki.cn10-1380/tn.2020.07.04.
YAO Dong, ZHANG Zheng, ZHANG Gaofei, et al. MVX-CFI: A practical active defense framework for software security[J]. Journal of Cyber Security, 2020, 5(4): 44–54. doi: 10.19363/J.cnki.cn10-1380/tn.2020.07.04.
|
[14] |
CHEN Liming and AVIZIENIS A. N-Version programminc: A fault-tolerance approach to reliability of software operation[C]. The 25th International Symposium on Fault-Tolerant Computing, Pasadena, USA, 1995. doi: 10.1109/FTCSH.1995.532621.
|
[15] |
魏帅, 于洪, 顾泽宇, 等. 面向工控领域的拟态安全处理机架构[J]. 信息安全学报, 2017, 2(1): 54–73. doi: 10.19363/j.cnki.cn10-1380/tn.2017.01.005.
WEI Shuai, YU Hong, GU Zeyu, et al. Architecture of mimic security processor for industry control system[J]. Journal of Cyber Security, 2017, 2(1): 54–73. doi: 10.19363/j.cnki.cn10-1380/tn.2017.01.005.
|
[16] |
宋克, 刘勤让, 魏帅, 等. 基于拟态防御的以太网交换机内生安全体系结构[J]. 通信学报, 2020, 41(5): 18–26. doi: 10.11959/j.issn.1000-436x.2020098.
SONG Ke, LIU Qinrang, WEI Shuai, et al. Endogenous security architecture of Ethernet switch based on mimic defense[J]. Journal on Communications, 2020, 41(5): 18–26. doi: 10.11959/j.issn.1000-436x.2020098.
|
[17] |
王禛鹏, 扈红超, 程国振. 一种基于拟态安全防御的DNS框架设计[J]. 电子学报, 2017, 45(11): 2705–2714. doi: 10.3969/j.issn.0372-2112.2017.11.018.
WANG Zhenpeng, HU Hongchao, and CHENG Guozhen. A DNS architecture based on mimic security defense[J]. Acta Electronica Sinica, 2017, 45(11): 2705–2714. doi: 10.3969/j.issn.0372-2112.2017.11.018.
|
[18] |
黄俊贤. 基于拟态防御架构的抗缓存投毒DNS系统研究[D]. [硕士论文], 华南理工大学, 2022. doi: 10.27151/d.cnki.ghnlu.2022.004792.
HUANG Junxian. A research on DNS against cache poisoning based on mimic defense architecture[D]. [Master dissertation], South China University of Technology, 2022. doi: 10.27151/d.cnki.ghnlu.2022.004792.
|
[19] |
任权, 邬江兴, 贺磊. 基于GSPN的拟态DNS构造策略研究[J]. 信息安全学报, 2019, 4(2): 37–52. doi: 10.19363/J.cnki.cn10-1380/tn.2019.03.05.
REN Quan, WU Jiangxing, and HE Lei. Research on mimic DNS architectural strategy based on generalized stochastic petri net[J]. Journal of Cyber Security, 2019, 4(2): 37–52. doi: 10.19363/J.cnki.cn10-1380/tn.2019.03.05.
|
[20] |
仝青, 张铮, 张为华, 等. 拟态防御Web服务器设计与实现[J]. 软件学报, 2017, 28(4): 883–897. doi: 10.13328/j.cnki.jos.005192.
TONG Qing, ZHANG Zheng, ZHANG Weihua, et al. Design and implementation of mimic defense Web server[J]. Journal of Software, 2017, 28(4): 883–897. doi: 10.13328/j.cnki.jos.005192.
|
[21] |
马海龙, 伊鹏, 江逸茗, 等. 基于动态异构冗余机制的路由器拟态防御体系结构[J]. 信息安全学报, 2017, 2(1): 29–42. doi: 10.19363/j.cnki.cn10-1380/tn.2017.01.003.
MA Hailong, YI Peng, JIANG Yiming, et al. Dynamic heterogeneous redundancy based router architecture with mimic defenses[J]. Journal of Cyber Security, 2017, 2(1): 29–42. doi: 10.19363/j.cnki.cn10-1380/tn.2017.01.003.
|
[22] |
马海龙, 尹梓诺, 胡涛. 面向异构化平台的轻量级程序异常检测方法[J]. 电子与信息学报, 2022, 44(2): 602–610. doi: 10.11999/JEIT210152.
MA Hailong, YIN Zinuo, and HU Tao. A lightweight program anomaly detection method for heterogeneous platform[J]. Journal of Electronics & Information Technology, 2022, 44(2): 602–610. doi: 10.11999/JEIT210152.
|
[23] |
MILLS B, ZNATI T, and MELHEM R. Shadow computing: An energy-aware fault tolerant computing model[C]. 2014 International Conference on Computing, Networking and Communications, Honolulu, USA, 2014: 73–77,doi: 10.1109/ICCNC.2014.6785308.
|
[24] |
SHYE A, BLOMSTEDT J, MOSELEY T, et al. PLR: A software approach to transient fault tolerance for multicore architectures[J]. IEEE Transactions on Dependable and Secure Computing, 2009, 6(2): 135–148. doi: 10.1109/TDSC.2008.62.
|
[25] |
ITURBE X, VENU B, OZER E, et al. The arm triple core lock-step (TCLS) processor[J]. ACM Transactions on Computer Systems, 2018, 36(3): 7. doi: 10.1145/3323917.
|
[26] |
SALAMA A, BINNIG C, KRASKA T, et al. Cost-based fault-tolerance for parallel data processing[C]. The 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Australia, 2015: 285–297. doi: 10.1145/2723372.2749437.
|
[27] |
JAYASEKARA S, HARWOOD A, and KARUNASEKERA S. A utilization model for optimization of checkpoint intervals in distributed stream processing systems[J]. Future Generation Computer Systems, 2020, 110: 68–79. doi: 10.1016/j.future.2020.04.019.
|
[28] |
COX B and EVANS D. N-Variant systems: A secretless framework for security through diversity[C]. The 15th USENIX Security Symposium, Vancouver, Canada, 2006: 105–120.
|
[29] |
YUMEREFENDI A R, MICKLE B, and COX L P. TightLip: Keeping applications from spilling the beans[C]. The 4th Symposium on Networked Systems Design and Implementation, Cambridge, USA, 2007: 25–31.
|
[30] |
SALAMAT B, JACKSON T, GAL A, et al. Orchestra: Intrusion detection using parallel execution and monitoring of program variants in user-space[C]. The 4th ACM European Conference on Computer Systems, Nuremberg, Germany, 2009. doi: 10.1145/1519065.1519071.
|
[31] |
VOLCKAERT S, DE SUTTER B, DE BAETS T, et al. GHUMVEE: Efficient, effective, and flexible replication[C]. The 15th International Symposium on Foundations and Practice of Security, Montreal, Canada, 2013. doi: 10.1007/978-3-642-37119-6_17.
|
[32] |
VOLCKAERT S, COPPENS B, and DE SUTTER B. Cloning your gadgets: Complete ROP attack immunity with multi-variant execution[J]. IEEE Transactions on Dependable and Secure Computing, 2016, 13(4): 437–450. doi: 10.1109/TDSC.2015.2411254.
|
[33] |
VOLCKAERT S, COPPENS B, VOULIMENEAS A, et al. Secure and efficient application monitoring and replication[C]. The 2016 USENIX Conference on Usenix Annual Technical Conference, Denver, USA, 2016: 167–179.
|
[34] |
KONING K, BOS H, and GIUFFRIDA C. Secure and efficient multi-variant execution using hardware-assisted process virtualization[C]. The 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Toulouse, France, 2016: 431–442. doi: 10.1109/DSN.2016.46.
|
[35] |
XU Meng, LU Kangjie, KIM T, et al. Bunshin: Compositing security mechanisms through diversification[C]. The 2017 USENIX Conference on Usenix Annual Technical Conference, Santa Clara, United States, 2017.
|
[36] |
VOULIMENEAS A, SONG D, PARZEFALL F, et al. DMON: A distributed heterogeneous n-variant system[EB/OL]. https://arxiv.org/abs/1903.03643, 2019.
|
[37] |
WANG Xiaoguang, YEOH S, LYERLY R, et al. A framework to secure applications with ISA heterogeneity[C]. The SFMA Workshop’19, Dresden, Germany, 2019.
|
[38] |
LU Kangjie, XU Meng, SONG Chengyu, et al. Stopping memory disclosures via diversification and replicated execution[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18(1): 160–173. doi: 10.1109/TDSC.2018.2878234.
|
[39] |
VOULIMENEAS A, SONG D, LARSEN P, et al. dMVX: Secure and efficient multi-variant execution in a distributed setting[C]. The 14th European Workshop on Systems Security, United Kingdom, 2021. doi: 10.1145/3447852.3458714.
|
[40] |
BERGER E D and ZORN B G. DieHard: Efficient probabilistic memory safety[J]. ACM Transactions on Computers, 2009. http://specialsci-cn-s.libyc.nudt.edu.cn/detail/37574340-cf0c-4339-b1cd-352d26c93f1f?resourceType=0.
|
[41] |
NOVARK G and BERGER E D. DieHarder: Securing the heap[C]. The 17th ACM Conference on Computer and Communications Security, Chicago, USA, 2010. doi: 10.1145/1866307.1866371.
|
[42] |
NOVARK G, BERGER E D, and ZORN B G. Exterminator: Automatically correcting memory errors with high probability[J]. Communications of the ACM, 2008, 51(12): 87–95. doi: 10.1145/1409360.1409382.
|
[43] |
CAPIZZI R, LONGO A, VENKATAKRISHNAN V N, et al. Preventing information leaks through shadow executions[C]. 2008 Annual Computer Security Applications Conference, Anaheim, USA, 2008: 102–110. doi: 10.1109/ACSAC.2008.50.
|
[44] |
RICHARDSON T, STAFFORD-FRASER Q, WOOD K R, et al. Virtual network computing[J]. IEEE Internet Computing, 1998, 2(1): 33–38. doi: 10.1109/4236.656066.
|
[45] |
ÖSTERLUND S, KONING K, OLIVIER P, et al. kMVX: Detecting kernel information leaks with multi-variant execution[C]. The Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, Providence, USA, 2019: 559–572. doi: 10.1145/3297858.3304054.
|
[46] |
苏野, 魏帅, 姚领彦, 等. 基于相对时间的异构执行体程序状态同步方法[C]. 第三届“先进计算与内生安全”学术会议论文集, 南京, 中国, 2020: 716–725.
SU Ye, WEI Shuai, YAO Lingyan, et al. Program state synchronization method of heterogeneous executors based on relative time[C]. The 3rd Conference on Advanced Computing and Endogenous Safety & Security, Nanjing, China, 2020: 716–725.
|
[47] |
KIM D, KWON Y, SUMNER W N, et al. Dual execution for on the fly fine grained execution comparison[C]. The Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, Istanbul, Turkey, 2015: 325–338. doi: 10.1145/2694344.2694394.
|
[48] |
XIN Bin, SUMNER W N, and ZHANG Xiangyu. Efficient program execution indexing[C]. The 29th ACM SIGPLAN Conference on Programming Language Design and Implementation, Tucson, USA, 2008: 238–248. doi: 10.1145/1375581.1375611.
|
[49] |
KIM D, SUMNER W N, ZHANG Xiangyu, et al. Reuse-oriented reverse engineering of functional components from x86 binaries[C]. The 36th International Conference on Software Engineering, Hyderabad, India, 2014: 1128–1139. doi: 10.1145/2568225.2568296.
|
[50] |
GAWLIK R, KOPPE P, KOLLENDA B, et al. Detile: Fine-grained information leak detection in script engines[C]. The 13th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, San Sebastián, Spain, 2016: 322–342. doi: 10.1007/978-3-319-40667-1_16.
|
[51] |
HOSEK P and CADAR C. Safe software updates via multi-version execution[C]. 2013 35th International Conference on Software Engineering, San Francisco, USA, 2013: 612–621. doi: 10.1109/ICSE.2013.6606607.
|
[52] |
HOSEK P and CADAR C. VARAN the unbelievable: An efficient N-version execution framework[C]. The 20th International Conference on Architectural Support for Programming Languages and Operating Systems, Istanbul, Turkey, 2015. doi: 10.1145/2694344.2694390.
|
[53] |
KWON Y, KIM D, SUMNER W N, et al. LDX: Causality inference by lightweight dual execution[C]. The 21st International Conference on Architectural Support for Programming Languages and Operating Systems, Atlanta, USA, 2016. doi: 10.1145/2872362.2872395.
|
[54] |
LEE D, WESTER B, VEERARAGHAVAN K, et al. Respec: Efficient online multiprocessor replayvia speculation and external determinism[J]. ACM SIGARCH Computer Architecture News, 2010, 38(1): 77–90. doi: 10.1145/1735970.1736031.
|
[55] |
XU Jun, GUO Pinyao, CHEN Bo, et al. Demo: A symbolic n-variant system[C]. The 2016 ACM Workshop on Moving Target Defense, Vienna, Austria, 2016. doi: 10.1145/2995272.2995284.
|
[56] |
BRUSCHI D, CAVALLARO L, and LANZI A. Diversified process replicæ for defeating memory error exploits[C]. 2007 IEEE International Performance, Computing, and Communications Conference, New Orleans, USA, 2007. doi: 10.1109/PCCC.2007.358924.
|
[57] |
CAVALLARO L. Comprehensive memory error protection via diversity and taint-tracking[D]. [Ph. D. dissertation], Università Degli Studi di Milano, 2007.
|
[58] |
VOLCKAERT S, COPPENS B, DE SUTTER B, et al. Taming parallelism in a multi-variant execution environment[C]. The Twelfth European Conference on Computer Systems, Belgrade, Serbia, 2017. doi: 10.1145/3064176.3064178.
|
[59] |
李秉政, 张铮, 马博林, 等. 编译支持的多变体融合执行设计与实现[J]. 信息安全学报, 2022, 7(4): 114–123. doi: 10.19363/J.cnki.cn10-1380/tn.2022.07.09.
LI Bingzheng, ZHANG Zheng, MA Bolin, et al. Design and implementation of integrated multi-variant execution supported by compiler[J]. Journal of Cyber Security, 2022, 7(4): 114–123. doi: 10.19363/J.cnki.cn10-1380/tn.2022.07.09.
|
[60] |
EL-ZOGHBY A M, ELSAYED M S, JURCUT A D, et al. NG-MVEE: A new proposed hybrid technique for enhanced mitigation of code re-use attack[J]. IEEE Access, 2023, 11: 48169–48191. doi: 10.1109/ACCESS.2023.3269881.
|
[61] |
张明权, 于洪, 魏帅, 等. 基于拟态的MCU设计及应用验证[C]. 第三届先进计算与内生安全学术会议论文集, 南京, 中国, 2020: 299–305.
ZHANG Mingquan, YU Hong, WEI Shuai, et al. MCU design and application verification based on mimic defense[C]. Proceedings of the 3rd Conference on Advanced Computing and Endogenous Safety & Security, Nanjing, China, 2020: 299–305.
|
[62] |
潘传幸, 张铮, 马博林, 等. 面向进程控制流劫持攻击的拟态防御方法[J]. 通信学报, 2021, 42(1): 37–47. doi: 10.11959/j.issn.1000-436x.2021013.
PAN Chuanxing, ZHANG Zheng, MA Bolin, et al. Method against process control-flow hijacking based on mimic defense[J]. Journal on Communications, 2021, 42(1): 37–47. doi: 10.11959/j.issn.1000-436x.2021013.
|
[63] |
SO H, DIDEHBAN M, KO Y, et al. EXPERTISE: An effective software-level redundant multithreading scheme against hardware faults[J]. ACM Transactions on Architecture and Code Optimization, 2022, 19(4): 53. doi: 10.1145/3546073.
|
[64] |
DE GROEF W, DEVRIESE D, NIKIFORAKIS N, et al. Secure multi-execution of web scripts: Theory and practice[J]. Journal of Computer Security, 2014, 22(4): 469–509. doi: 10.3233/JCS-130495.
|
[65] |
姚远, 潘传幸, 张铮, 等. 多样化软件系统量化评估方法[J]. 通信学报, 2020, 41(3): 120–125. doi: 10.11959/j.issn.1000-436x.2020051.
YAO Yuan, PAN Chuanxing, ZHANG Zheng, et al. Method of quantitative assessment for diversified software system[J]. Journal on Communications, 2020, 41(3): 120–125. doi: 10.11959/j.issn.1000-436x.2020051.
|
[66] |
DUAN Jun, HAMLEN K W, and FERRELL B. Better late than never: An n-variant framework of verification for Java source code on CPU x GPU hybrid platform[C]. The 28th International Symposium on High-Performance Parallel and Distributed Computing, Phoenix, USA, 2019. doi: 10.1145/3307681.3326604.
|
[67] |
JONES J, HISER J D, DAVIDSON J W, et al. Defeating denial-of-service attacks in a self-managing N-variant system[J]. ACM Transactions on Software Engineering & Methodology, 2019, 28(3): 126–138.
|
[68] |
BAS F, ALCAIDE S, LORENZO R, et al. SafeDE: A flexible diversity enforcement hardware module for light-lockstepping[C]. 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design, Torino, Italy, 2021: 1–7. doi: 10.1109/IOLTS52814.2021.9486715.
|
[69] |
BAS F, ALCAIDE S, CABO G, et al. SafeDE: A low-cost hardware solution to enforce diverse redundancy in multicores[J]. IEEE Transactions on Device and Materials Reliability, 2022, 22(2): 111–119. doi: 10.1109/TDMR.2022.3156799.
|
[70] |
ZHOU Dacheng, CHEN Hongchang, CHENG Guozhen, et al. SecIngress: An API gateway framework to secure cloud applications based on n-variant system[J]. China Communications, 2021, 18(8): 17–34. doi: 10.23919/JCC.2021.08.002.
|
[71] |
GOLDMAN H G. Building Secure, Resilient Architectures for Cyber Mission Assurance[R]. McLean: MITRE Corporation, 2010.
|
[72] |
ROSS R, PILLITTERI V, GRAUBART R, et al. Developing cyber-resilient systems: A Systems Security Engineering Approach[R]. NIST Special Publication, 2021. doi: 10.6028/NIST.SP.800-160v2.
|
[73] |
LINKOV I, LIGO A, STODDARD K, et al. Cyber efficiency and cyber resilience[J]. Communications of the ACM, 2023, 66(4): 33–37. doi: 10.1145/3549073.
|
[74] |
YADAV S B. A resilient hierarchical distributed model of a cyber physical system[J]. Cyber-Physical Systems, 2023, 9(2): 97–121. doi: 10.1080/23335777.2021. 1964101.
|
[75] |
王明楠, 刘勤让, 刘冬培, 等. 一种晶上系统互连网络的容错感知结构[J]. 计算机应用研究, 2023, 40(2): 533–538 doi: 10.19734/j.issn.1001-3695.2022.06.0355.
WANG Mingnan, LIU Qinrang, LIU Dongpei, et al. Fault-tolerant awareness structure for network on wafer[J]. Application Research of Computers, 2023, 40(2): 533–538 doi: 10.19734/j.issn.1001-3695.2022.06.0355.
|