Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
XU Jinlei, ZHAO Junsheng, LU Huabing, JIANG Xu, ZHAO Nan. An Overview on Multi-dimensional Expanded Integrated Sensing and Communication for 6G[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1672-1683. doi: 10.11999/JEIT231045
Citation: XU Jinlei, ZHAO Junsheng, LU Huabing, JIANG Xu, ZHAO Nan. An Overview on Multi-dimensional Expanded Integrated Sensing and Communication for 6G[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1672-1683. doi: 10.11999/JEIT231045

An Overview on Multi-dimensional Expanded Integrated Sensing and Communication for 6G

doi: 10.11999/JEIT231045
Funds:  The National Key R&D Program of China (2020YFB1807002), The National Natural Science Foundation of China (62371087, 62101091), The Application and Fundamental Research Planning Project in Liaoning Province (2023TH2/101300197)
  • Received Date: 2023-09-25
  • Rev Recd Date: 2024-04-16
  • Available Online: 2024-05-04
  • Publish Date: 2024-05-10
  • Facing the demand for interconnectivity sensing of three-dimensional coverage for the sixth-Generation mobile communication (6G) networks and the spectrum scarcity issue caused by the widespread access of wireless devices, the multi-dimensional expanded Integrated Sensing and Communication (ISAC), based on Unmanned Aerial Vehicles (UAV) and Intelligent Reflecting Surfaces (IRS), is capable of achieving synergistic communication and sensing functions in the three-dimensional network space. This can effectively enhance spectrum efficiency, hardware resource utilization, and align with the wireless network vision of 6G Internet of Everything. This paper provides an overview of the architecture for the 6G multi-dimensional expanded ISAC. Firstly, it summarizes the theoretical foundations of the 6G network vision and ISAC networks, and the application scenarios, development trends, and performance indicators of multi-dimensional expanded ISAC based on UAV and IRS are discussed. Then, it investigates the potential applications of 6G key technologies, such as ultra-massive multiple-input and multiple-output antenna, terahertz, simultaneous wireless information and power transfer, artificial intelligence, covert communication, and active IRS, in multi-dimensional expanded ISAC networks based on UAV and IRS. Finally, the future development direction and key technical challenges of 6G multi-dimensional expanded ISAC sre prospected.
  • loading
  • [1]
    易芝玲, 王森, 韩双锋, 等. 从5G到6G的思考: 需求、挑战与技术发展趋势[J]. 北京邮电大学学报, 2020, 43(2): 1–9. doi: 10.13190/j.jbupt.2020-024.

    YI Zhiling, WANG Sen, HAN Shuangfeng, et al. From 5G to 6G: Requirements, challenges and technical trends[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(2): 1–9. doi: 10.13190/j.jbupt.2020-024.
    [2]
    LIU Guangyi, HUANG Yuhong, LI Na, et al. Vision, requirements and network architecture of 6G mobile network beyond 2030[J]. China Communications, 2020, 17(9): 92–104. doi: 10.23919/JCC.2020.09.008.
    [3]
    ZHANG Shunqing, XIANG Chenlu, and XU Shugong. 6G: Connecting everything by 1000 times price reduction[J]. IEEE Open Journal of Vehicular Technology, 2020, 1: 107–115. doi: 10.1109/OJVT.2020.2980003.
    [4]
    HAN Chong, WANG Yiqin, LI Yuanbo, et al. Terahertz wireless channels: A holistic survey on measurement, modeling, and analysis[J]. IEEE Communications Surveys & Tutorials, 2022, 24(3): 1670–1707. doi: 10.1109/COMST.2022.3182539.
    [5]
    赵亚军, 郁光辉, 徐汉青. 6G移动通信网络: 愿景、挑战与关键技术[J]. 中国科学: 信息科学, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.

    ZHAO Yajun, YU Guanghui, and XU Hanqing. 6G mobile communication networks: Vision, challenges, and key technologies[J]. SCIENTIA SINICA Informationis, 2019, 49(8): 963–987. doi: 10.1360/N112019-00033.
    [6]
    AKAN O B and ARIK M. Internet of radars: Sensing versus sending with joint radar-communications[J]. IEEE Communications Magazine, 2020, 58(9): 13–19. doi: 10.1109/MCOM.001.1900550.
    [7]
    LIU Rang, LI Ming, LUO Honghao, et al. Integrated sensing and communication with reconfigurable intelligent surfaces: Opportunities, applications, and future directions[J]. IEEE Wireless Communications, 2023, 30(1): 50–57. doi: 10.1109/MWC.002.2200206.
    [8]
    张嘉慧, 王新奕, 费泽松, 等. 6G通感融合网络中的物理层安全: 机遇与挑战[J]. 移动通信, 2023, 47(3): 55–61. doi: 10.3969/j.issn.1006-1010.20230204-0002.

    ZHANG Jiahui, WANG Xinyi, FEI Zesong, et al. Physical layer security in 6G integrated sensing and communication systems: Opportunities and challenges[J]. Mobile Communications, 2023, 47(3): 55–61. doi: 10.3969/j.issn.1006-1010.20230204-0002.
    [9]
    陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.

    CHEN Xinying, SHENG Min, LI Bo, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781–789. doi: 10.11999/JEIT210789.
    [10]
    朱政宇, 王梓晅, 徐金雷, 等. 智能反射面辅助的未来无线通信: 现状与展望[J]. 航空学报, 2022, 43(2): 025014. doi: 10.7527/s1000-6893.2021.25014.

    ZHU Zhengyu, WANG Zixuan, XU Jinlei, et al. Future wireless communication assisted by intelligent reflecting surface: State of art and prospects[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 025014. doi: 10.7527/s1000-6893.2021.25014.
    [11]
    朱政宇, 徐金雷, 孙钢灿, 等. 基于IRS辅助的SWIPT物联网系统安全波束成形设计[J]. 通信学报, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000−436x.2021060.

    ZHU Zhengyu, XU Jinlei, SUN Gangcan, et al. Secure beamforming design for IRS-assisted SWIPT internet of things system[J]. Journal on Communications, 2021, 42(4): 185–193. doi: 10.11959/j.issn.1000−436x.2021060.
    [12]
    PANG Xiaowei, SHENG Min, ZHAO Nan, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164–170. doi: 10.1109/MWC.010.2000528.
    [13]
    HE Yinghui, CAI Yunlong, MAO Hao, et al. RIS-assisted communication radar coexistence: Joint beamforming design and analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2131–2145. doi: 10.1109/JSAC.2022.3155507.
    [14]
    SU Yuhua, PANG Xiaowei, CHEN Shanzhi, et al. Spectrum and energy efficiency optimization in IRS-assisted UAV networks[J]. IEEE Transactions on Communications, 2022, 70(10): 6489–6502. doi: 10.1109/TCOMM.2022.3201122.
    [15]
    LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
    [16]
    伍光新, 姚元, 祁琳琳. 雷达通信波形一体化发展综述[J]. 现代雷达, 2021, 43(9): 37–45. doi: 10.16592/j.cnki.1004-7859.2021.09.007.

    WU Guangxin, YAO Yuan, and QI Linlin. An overview on radar-communication integration of waveform[J]. Modern Radar, 2021, 43(9): 37–45. doi: 10.16592/j.cnki.1004-7859.2021.09.007.
    [17]
    IMT-2030(6G)推进组. 6G网络架构愿景与关键技术展望白皮书[R]. 2021.

    IMT-2030 (6G) Promotion Group. 6G Network Architecture Vision and Key Technology Outlook White Paper[R]. 2021.
    [18]
    CUI Yanpeng, FENG Zhiyong, ZHANG Qixun, et al. Toward trusted and swift UAV communication: ISAC-enabled dual identity mapping[J]. IEEE Wireless Communications, 2023, 30(1): 58–66. doi: 10.1109/MWC.003.2200207.
    [19]
    MENG Kaitao, WU Qingqing, MA Shaodan, et al. Throughput maximization for UAV-enabled integrated periodic sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 671–687. doi: 10.1109/TWC.2022.3197623.
    [20]
    SHAO Xiaodan, YOU Changsheng, MA Wenyan, et al. Target sensing with intelligent reflecting surface: Architecture and performance[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2070–2084. doi: 10.1109/JSAC.2022.3155546.
    [21]
    YOU Changsheng, KANG Zhenyu, ZENG Yong, et al. Enabling smart reflection in integrated air-ground wireless network: IRS meets UAV[J]. IEEE Wireless Communications, 2021, 28(6): 138–144. doi: 10.1109/MWC.001.2100148.
    [22]
    PANG Xiaowei, ZHAO Nan, TANG Jie, et al. IRS-assisted secure UAV transmission via joint trajectory and beamforming design[J]. IEEE Transactions on Communications, 2022, 70(2): 1140–1152. doi: 10.1109/TCOMM.2021.3136563.
    [23]
    李国琳, 郭文彬. 雷达通信一体化波形设计综述[J]. 移动通信, 2022, 46(5): 38–44. doi: 10.3969/j.issn.1006-1010.2022.05.006.

    LI Guolin and GUO Wenbin. Waveform design for integrated radar and communication: A survey[J]. Mobile Communications, 2022, 46(5): 38–44. doi: 10.3969/j.issn.1006-1010.2022.05.006.
    [24]
    BAYESTEH A, 何佳, 陈雁, 等. 通信感知一体化——从概念到实践[EB/OL].https://www.huawei.com/cn/huaweitech/future-technologies/integrated-sensing-communication-concept-practice, 2022.

    BAYESTEH A, HE Jia, CHEN Yan, et al. Integration of communication and perception-from concept to practice[EB/OL].https://www.huawei.com/cn/huaweitech/future-technologies/integrated-sensing-communication-concept-practice, 2022.
    [25]
    XIAO Zhiqiang and ZENG Yong, Waveform design and performance analysis for full-duplex integrated sensing and communication [J] IEEE Journal on Selected Areas in Communications, 2022, 40(6):1823–1837. doi: 10.1109/JSAC.2022.3155509.
    [26]
    HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394.
    [27]
    NOWAK M, WICKS M, ZHANG Zhiping, et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 28–35. doi: 10.1109/MAES.2016.150236.
    [28]
    KUMARI P, MYERS N J, and HEATH R W. Adaptive and fast combined waveform-beamforming design for mmWave automotive joint communication-radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 996–1012. doi: 10.1109/JSTSP.2021.3071592.
    [29]
    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Robust OFDM integrated radar and communications waveform design based on information theory[J]. Signal Processing, 2019, 162: 317–329. doi: 10.1016/j.sigpro.2019.05.001.
    [30]
    LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
    [31]
    XIAO Zhiqiang and ZENG Yong. Waveform design and performance analysis for full-duplex integrated sensing and communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1823–1837. doi: 10.1109/JSAC.2022.3155509.
    [32]
    BAXTER W, ABOUTANIOS E, and HASSANIEN A. Joint radar and communications for frequency-hopped MIMO systems[J]. IEEE Transactions on Signal Processing, 2022, 70: 729–742. doi: 10.1109/TSP.2022.3142909.
    [33]
    CUI Yuanhao, LIU Fan, JING Xiaojun, et al,Integrating sensing and communications for ubiquitous IoT: Applications, trends,and challenges[J]. IEEE Network, 2021, 35(5):158–167. doi: 10.1109/MNET.010.2100152.
    [34]
    XU Yu, ZHANG Tiankui, LIU Yuanwei, et al. UAV-enabled integrated sensing, computing, and communication: A fundamental trade-off[J]. IEEE Wireless Communications Letters, 2023, 12(5): 843–847. doi: 10.1109/LWC.2023.3245728.
    [35]
    中国通信学会. 通感算一体化网络前沿报告(2021年)[R]. 中国通信学会, 2021.

    China Communications Society. Frontier Report on the Integrated Sensing, Communication and Computing Network[R]. China Communications Society, 2021.
    [36]
    ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208.
    [37]
    CHEN Zhi, MA Xinying, ZHANG Bo, et al. A survey on terahertz communications[J]. China Communications, 2019, 16(2): 1–35. doi: 10.12676/j.cc.2019.02.001.
    [38]
    IMT-2030(6G)推进组. 太赫兹通信技术研究报告[R]. 2022.

    IMT-2030 (6G) Promotion Group. Terahertz Communication Technology Research Report[R]. 2022.
    [39]
    CLERCKX B, ZHANG Rui, SCHOBER R, et al. Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(1): 4–33. doi: 10.1109/JSAC.2018.2872615.
    [40]
    WANG Jiadai, LIU Jiajia, LI Jingyi, et al. Artificial intelligence-assisted network slicing: Network assurance and service provisioning in 6G[J]. IEEE Vehicular Technology Magazine, 2023, 18(1): 49–58. doi: 10.1109/MVT.2022.3228399.
    [41]
    LIU Peng, FEI Zesong, WANG Xinyi, et al. Outage constrained robust secure beamforming in integrated sensing and communication systems[J]. IEEE Wireless Communications Letters, 2022, 11(11): 2260–2264. doi: 10.1109/LWC.2022.3198683.
    [42]
    王超, 安建平, 邢成文, 等. 面向空间信息网络的隐蔽通信技术综述[J]. 中国科学: 信息科学, 2023. doi: 10.1360/SSI-2023-0101.

    WANG Chao, AN Jianping, XING Chengwen, et al. A review of covert communication technologies for space information networks[J]. SCIENTIA SINICA Informationis, 2023. doi: 10.1360/SSI-2023-0101.
    [43]
    ZHANG Zijian, DAI Linglong, CHEN Xibi, et al. Active RIS vs. passive RIS: Which will prevail in 6G?[J]. IEEE Transactions on Communications, 2023, 71(3): 1707–1725. doi: 10.1109/TCOMM.2022.3231893.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (223) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return