Advanced Search
Turn off MathJax
Article Contents
LIN Lang, ZHAO Hongzhi, SHAO Shihai, TANG Youxi. Broadband Spatial Self-Interference Cancellation for Full Duplexing Array[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231036
Citation: LIN Lang, ZHAO Hongzhi, SHAO Shihai, TANG Youxi. Broadband Spatial Self-Interference Cancellation for Full Duplexing Array[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT231036

Broadband Spatial Self-Interference Cancellation for Full Duplexing Array

doi: 10.11999/JEIT231036
Funds:  The National Natural Science Foundation of China (U19B2014, 62071094, 61901396)
  • Received Date: 2023-09-21
  • Rev Recd Date: 2024-04-08
  • Available Online: 2024-04-26
  • The multi-functional integrated platform with simultaneous transmit and receive capability faces the strong Self-Interference (SI) coupled between the adjacent transmit and receive arrays. In this paper, a wideband SI cancellation method in the space domain for fully digital phased array systems is designed. A non-convex optimization problem is formulated to minimize the residual SI and noise power while constraining the loss of beamforming gain in the desired direction, and an alternate optimization method is proposed to jointly determine the transmit and receive beamforming weights, and the SI cancellation performance of the proposed algorithm is analyzed. Theoretical analysis and simulation results show that a 60-element array can achieve an Effective Isotropic Isolation (EII) of 168 dB when the central frequency is 2.4 GHz, the bandwidth is 100 MHz, and the beamforming gain loss is limited to 3 dB, which is 7 dB below the EII upper bound.
  • loading
  • [1]
    肖博, 霍凯, 刘永祥. 雷达通信一体化研究现状与发展趋势[J]. 电子与信息学报, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.

    XIAO Bo, HUO Kai, and LIU Yongxiang. Development and prospect of radar and communication integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739–750. doi: 10.11999/JEIT180515.
    [2]
    KOLODZIEJ K E, DOANE J P, PERRY B T, et al. Adaptive beamforming for multi-function in-band full-duplex applications[J]. IEEE Wireless Communications, 2021, 28(1): 28–35. doi: 10.1109/MWC.001.2000203.
    [3]
    BARNETO C B, RIIHONEN T, LIYANAARACHCHI S D, et al. Beamformer design and optimization for joint communication and full-duplex sensing at mm-waves[J]. IEEE Transactions on Communications, 2022, 70(12): 8298–8312. doi: 10.1109/TCOMM.2022.3218623.
    [4]
    YU Bin, QIAN Chen, LEE J, et al. Realizing high power full duplex in millimeter wave system: Design, prototype and results[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(9): 2893–2906. doi: 10.1109/JSAC.2023.3287609.
    [5]
    王俊, 赵宏志, 卿朝进, 等. 同时同频全双工场景中的射频域自适应干扰抵消[J]. 电子与信息学报, 2014, 36(6): 1435–1440. doi: 10.3724/SP.J.1146.2013.01187.

    WANG Jun, ZHAO Hongzhi, QING Chaojin, et al. Adaptive self-interference cancellation at RF domain in co-frequency co-time full duplex systems[J]. Journal of Electronics & Information Technology, 2014, 36(6): 1435–1440. doi: 10.3724/SP.J.1146.2013.01187.
    [6]
    ROBERTS I P, ANDREWS J G, JAIN H B, et al. Millimeter-wave full duplex radios: New challenges and techniques[J]. IEEE Wireless Communications, 2021, 28(1): 36–43. doi: 10.1109/MWC.001.2000221.
    [7]
    ROBERTS I P and VISHWANATH S. Beamforming cancellation design for millimeter-wave full-duplex[C]. Proceedings of 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9013116.
    [8]
    ROBERTS I P, ANDREWS J G, and VISHWANATH S. Hybrid beamforming for millimeter wave full-duplex under limited receive dynamic range[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7758–7772. doi: 10.1109/TWC.2021.3087417.
    [9]
    FULTON C, YEARY M, THOMPSON D, et al. Digital phased arrays: Challenges and opportunities[J]. Proceedings of the IEEE, 2016, 104(3): 487–503. doi: 10.1109/JPROC.2015.2501804.
    [10]
    EVERETT E, SHEPARD C, ZHONG Lin, et al. SoftNull: Many-antenna full-duplex wireless via digital beamforming[J]. IEEE Transactions on Wireless Communications, 2016, 15(12): 8077–8092. doi: 10.1109/TWC.2016.2612625.
    [11]
    DOANE J P, KOLODZIEJ K E, and PERRY B T. Simultaneous transmit and receive with digital phased arrays[C]. Proceedings of 2016 IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2016: 1–6. doi: 10.1109/ARRAY.2016.7832606.
    [12]
    CUMMINGS I T, DOANE J P, SCHULZ T J, et al. Aperture-level simultaneous transmit and receive with digital phased arrays[J]. IEEE Transactions on Signal Processing, 2020, 68: 1243–1258. doi: 10.1109/TSP.2020.2968262.
    [13]
    LIU Ao, SHENG Weixing, and RIIHONEN T. Per-antenna self-interference cancellation beamforming design for digital phased array[J]. IEEE Signal Processing Letters, 2022, 29: 2442–2446. doi: 10.1109/LSP.2022.3224829.
    [14]
    CHEN Tingjun, DASTJERDI M B, KRISHNASWAMY H, et al. Wideband full-duplex phased array with joint transmit and receive beamforming: Optimization and rate gains[J]. IEEE/ACM Transactions on Networking, 2021, 29(4): 1591–1604. doi: 10.1109/TNET.2021.3069125.
    [15]
    SHI Chengzhe, PAN Wensheng, SHEN Ying, et al. Robust transmit beamforming for self-interference cancellation in STAR phased array systems[J]. IEEE Signal Processing Letters, 2022, 29: 2622–2626. doi: 10.1109/LSP.2022.3229641.
    [16]
    JIANG J S and INGRAM M A. Spherical-wave model for short-range MIMO[J]. IEEE Transactions on Communications, 2005, 53(9): 1534–1541. doi: 10.1109/TCOMM.2005.852842.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (22) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return