Citation: | HUO Wei, WANG Ke, TANG Jun, WANG Nian, LIANG Dong. A Dual-stream Network Based on Body Contour Deformation Field for Gait Recognition[J]. Journal of Electronics & Information Technology, 2024, 46(10): 4062-4071. doi: 10.11999/JEIT231025 |
[1] |
杨旗, 薛定宇. 基于双尺度动态贝叶斯网络及多信息融合的步态识别[J]. 电子与信息学报, 2012, 34(5): 1148–1153. doi: 10.3724/SP.J.1146.2011.01012.
YANG Qi and XUE Dingyu. Gait recognition based on two-scale dynamic Bayesian network and more information fusion[J]. Journal of Electronics & Information Technology, 2012, 34(5): 1148–1153. doi: 10.3724/SP.J.1146.2011.01012.
|
[2] |
王茜, 蔡竞, 郭柏冬, 等. 面向公共安全的步态识别技术研究[J]. 中国人民公安大学学报: 自然科学版, 2023, 29(1): 68–76. doi: 10.3969/j.issn.1007-1784.2023.01.009.
WANG Qian, CAI Jing, GUO Baidong, et al. Research on gait recognition technology for public security[J]. Journal of People’s Public Security University of China: Science and Technology, 2023, 29(1): 68–76. doi: 10.3969/j.issn.1007-1784.2023.01.009.
|
[3] |
LIAO Rijun, YU Shiqi, AN Weizhi, et al. A model-based gait recognition method with body pose and human prior knowledge[J]. Pattern Recognition, 2020, 98: 107069. doi: 10.1016/j.patcog.2019.107069.
|
[4] |
CAO Zhe, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 1302–1310. doi: 10.1109/CVPR.2017.143.
|
[5] |
TEEPE T, GILG J, HERZOG F, et al. Towards a deeper understanding of skeleton-based gait recognition[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 1568–1576. doi: 10.1109/CVPRW56347.2022.00163.
|
[6] |
AN Weizhi, YU Shiqi, MAKIHARA Y, et al. Performance evaluation of model-based gait on multi-view very large population database with pose sequences[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(4): 421–430. doi: 10.1109/tbiom.2020.3008862.
|
[7] |
WANG Likai, CHEN Jinyan, and LIU Yuxin. Frame-level refinement networks for skeleton-based gait recognition[J]. Computer Vision and Image Understanding, 2022, 222: 103500. doi: 10.1016/j.cviu.2022.103500.
|
[8] |
TEEPE T, KHAN A, GILG J, et al. Gaitgraph: Graph convolutional network for skeleton-based gait recognition[C]. 2021 IEEE International Conference on Image Processing, Anchorage, USA, 2021: 2314–2318. doi: 10.1109/icip42928.2021.9506717.
|
[9] |
LIAO Rijun, CAO Chunshui, GARCIA E B, et al. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations[C]. The 12th Chinese Conference on Biometric Recognition, Shenzhen, China, 2017: 474–483. doi: 10.1007/978-3-319-69923-3_51.
|
[10] |
LI Xiang, MAKIHARA Y, XU Chi, et al. End-to-end model-based gait recognition[C]. The 15th Asian Conference on Computer Vision, Kyoto, Japan, 2020: 3–20. doi: 10.1007/978-3-030-69535-4_1.
|
[11] |
HAN Ju and BHANU B. Individual recognition using gait energy image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 316–322. doi: 10.1109/TPAMI.2006.38.
|
[12] |
LIU Jianyi and ZHENG Nanning. Gait history image: A novel temporal template for gait recognition[C]. 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2007: 663–666. doi: 10.1109/ICME.2007.4284737.
|
[13] |
CHEN Changhong, LIANG Jimin, ZHAO Heng, et al. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009, 30(11): 977–984. doi: 10.1016/j.patrec.2009.04.012.
|
[14] |
CHAO Hanqing, HE Yiwei, ZHANG Junping, et al. GaitSet: Regarding gait as a set for cross-view gait recognition[C]. The 33th AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 8126–8133. doi: 10.1609/aaai.v33i01.33018126.
|
[15] |
HOU Saihui, CAO Chunshui, LIU Xu, et al. Gait lateral network: Learning discriminative and compact representations for gait recognition[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 382–398. doi: 10.1007/978-3-030-58545-7_22.
|
[16] |
LIN Beibei, ZHANG Shunli, and YU Xin. Gait recognition via effective global-local feature representation and local temporal aggregation[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 14628–14636. doi: 10.1109/ICCV48922.2021.01438.
|
[17] |
WANG Ming, LIN Beibei, GUO Xianda, et al. GaitStrip: Gait recognition via effective strip-based feature representations and multi-level framework[C]. The 16th Asian Conference on Computer Vision, Macao, China, 2023: 711–727. doi: 10.1007/978-3-031-26316-3_42.
|
[18] |
LI Huakang, QIU Yidan, ZHAO Huimin, et al. GaitSlice: A gait recognition model based on spatio-temporal slice features[J]. Pattern Recognition, 2022, 124: 108453. doi: 10.1016/j.patcog.2021.108453.
|
[19] |
FAN Chao, PENG Yunjie, CAO Chunhui, et al. GaitPart: Temporal part-based model for gait recognition[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 14213–14221. doi: 10.1109/CVPR42600.2020.01423.
|
[20] |
HUANG Xiaohu, ZHU Duowang, WANG Hao, et al. Context-sensitive temporal feature learning for gait recognition[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 12889–12898. doi: 10.1109/ICCV48922.2021.01267.
|
[21] |
LIN Beibei, ZHANG Shunli, and BAO Feng. Gait recognition with multiple-temporal-scale 3D convolutional neural network[C]. The 28th ACM International Conference on Multimedia, Seattle, USA, 2020: 3054–3062. doi: 10.1145/3394171.3413861.
|
[22] |
CHAI Tianrui, LI Annan, ZHANG Shaoxiong, et al. Lagrange motion analysis and view embeddings for improved gait recognition[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 20217–20226. doi: 10.1109/CVPR52688.2022.01961.
|
[23] |
LIANG Junhao, FAN Chao, HOU Saihui, et al. GaitEdge: Beyond plain end-to-end gait recognition for better practicality[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 375–390. doi: 10.1007/978-3-031-20065-6_22.
|
[24] |
CHUI H and RANGARAJAN A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2/3): 114–141. doi: 10.1016/s1077-3142(03)00009-2.
|
[25] |
YU Shiqi, TAN Daoliang, and TAN Tieniu. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C]. The 18th International Conference on Pattern Recognition, Hong Kong, China 2006: 441–444. doi: 10.1109/icpr.2006.67.
|
[26] |
LI Weijia, HOU Saihui, ZHANG Chunjie, et al. An in-depth exploration of person re-identification and gait recognition in cloth-changing conditions[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 13824–13833. doi: 10.1109/CVPR52729.2023.01328.
|
[27] |
DOU Huanzhang, ZHANG Pengyi, SU Wei, et al. MetaGait: Learning to learn an Omni sample adaptive representation for gait recognition[C]. The 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 357–374. doi: 10.1007/978-3-031-20065-6_21.
|
[28] |
DOU Huanzhang, ZHANG Pengyi, SU Wei, et al. GaitGCI: Generative counterfactual intervention for gait recognition[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 5578–5588. doi: 10.1109/cvpr52729.2023.00540.
|