| Citation: | JI Wei, WANG Chuanyu, WU Di, LI Yun, ZHENG Huifen. Parkinson's Disease Detection Method Based on Cross-Language Acoustic Analysis[J]. Journal of Electronics & Information Technology, 2024, 46(2): 546-554. doi: 10.11999/JEIT230981 | 
 
	                | [1] | GULLAPALLI A S and MITTAL V K. Early detection of Parkinson’s disease through speech features and machine learning: a review[C]. ICT with Intelligent Applications: Proceedings of ICTIS, Singapore, 2022: 203–212. doi:  10.1007/978-981-16-4177-0_22. | 
| [2] | BENBA A, JILBAB A, SANDABAD S,  et al. Voice signal processing for detecting possible early signs of Parkinson’s disease in patients with rapid eye movement sleep behavior disorder[J]. International Journal of Speech Technology, 2019, 22(1): 121–129. doi:  10.1007/s10772-018-09588-0. | 
| [3] | 季薇, 杨茗淇, 李云, 等. 基于掩蔽自监督语音特征提取的帕金森病检测方法[J]. 电子与信息学报, 2023, 45(10): 3502–3510. doi:  10.11999/JEIT221041. JI Wei, YANG Mingqi, LI Yun,  et al. Parkinson's disease detection method based on masked self-supervised speech feature extraction[J]. Journal of Electronics & Information Technology, 2023, 45(10): 3502–3510. doi:  10.11999/JEIT221041. | 
| [4] | SUPHINNAPONG P, PHOKAEWVARANGKUL O, THUBTHONG N,  et al. Objective vowel sound characteristics and their relationship with motor dysfunction in Asian Parkinson’s disease patients[J]. Journal of the Neurological Sciences, 2021, 426: 117487. doi:  10.1016/j.jns.2021.117487. | 
| [5] | HSU S C, JIAO Yishan, MCAULIFFE M J,  et al. Acoustic and perceptual speech characteristics of native Mandarin speakers with Parkinson's disease[J]. The Journal of the Acoustical Society of America, 2017, 141(3): EL293–EL299. doi:  10.1121/1.4978342. | 
| [6] | KOVAC D, MEKYSKA J, GALAZ Z,    et al. Multilingual analysis of speech and voice disorders in patients with Parkinson's Disease[C]. The 44th International Conference on Telecommunications and Signal Processing, Brno, Czech Republic, 2021: 273–277. doi:  10.1109/TSP52935.2021.9522597. | 
| [7] | VÁSQUEZ-CORREA J C, ARIAS-VERGARA T, RIOS-URREGO C D,    et al. Convolutional neural networks and a transfer learning strategy to classify Parkinson's Disease from speech in three different languages[C]. 24th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Havana, Cuba, 2019: 697–706. doi:  10.1007/978-3-030-33904-3_66. | 
| [8] | KIM Y and CHOI Y. A cross-language study of acoustic predictors of speech intelligibility in individuals with Parkinson's Disease[J]. Journal of Speech, Language, and Hearing Research, 2017, 60(9): 2506–2518. doi:  10.1044/2017_JSLHR-S-16-0121. | 
| [9] | NISHIO M and NIIMI S. Comparison of speaking rate, articulation rate and alternating motion rate in dysarthric speakers[J]. Folia Phoniatrica et Logopaedica, 2006, 58(2): 114–131. doi:  10.1159/000089612. | 
| [10] | OROZCO-ARROYAVE J R, HöNIG F, ARIAS-LONDOñO J D,  et al. Automatic detection of Parkinson's disease in running speech spoken in three different languages[J]. The Journal of the Acoustical Society of America, 2016, 139(1): 481–500. doi:  10.1121/1.4939739. | 
| [11] | YEO E J, CHOI K, KIM S,    et al. Cross-lingual dysarthria severity classification for English, Korean, and Tamil[C]. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Chiang Mai, Thailand, 2022: 566–574. doi:  10.23919/APSIPAASC55919.2022.9980124. | 
| [12] | VÁSQUEZ-CORREA J C, RIOS-URREGO C D, ARIAS-VERGARA T,  et al. Transfer learning helps to improve the accuracy to classify patients with different speech disorders in different languages[J]. Pattern Recognition Letters, 2021, 150: 272–279. doi:  10.1016/j.patrec.2021.04.011. | 
| [13] | JIANG Junguang, SHU Yang, WANG Jianmin,    et al. Transferability in deep learning: A survey[J]. arXiv: 2201.05867, 2022. doi:  10.48550/arXiv.2201.05867. | 
| [14] | GHIFARY M, KLEIJN W B, and ZHANG Mengjie. Domain adaptive neural networks for object recognition[C]. 13th Pacific Rim International Conference on Artificial Intelligence, Gold Coast, QLD, Australia, 2014: 898–904. doi:  10.1007/978-3-319-13560-1_76. | 
| [15] | ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong,  et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713–1722. doi:  10.1109/tnnls.2020.2988928. | 
| [16] | GANIN Y, USTINOVA E, AJAKAN H,  et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030. doi:  10.1007/978-3-319-58347-1_10. | 
| [17] | LONG Mingsheng, CAO Zhangjie, WANG Jianmin,    et al. Conditional adversarial domain adaptation[C]. The 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 1647–1657. doi:  10.5555/3326943.3327094. | 
| [18] | CAI Ruichu, LI Zijian, WEI Pengfei,    et al. Learning disentangled semantic representation for domain adaptation[C]. International Joint Conferences on Artificial Intelligence (IJCAI), Macao, China, 2019: 2060–2066. doi:  10.24963/ijcai.2019/285. | 
| [19] | TSANAS A, LITTLE M A, MCSHARRY P E,  et al. Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(5): 1264–1271. doi:  10.1109/TBME.2012.2183367. | 
| [20] | VASWANI A, SHAZEER N, PARMAR N,    et al. Attention is all you need[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010. doi:  10.5555/3295222.3295349. | 
| [21] | OROZCO-ARROYAVE J R, VÁSQUEZ-CORREA J C, VARGAS-BONILLA J F,  et al. NeuroSpeech: An open-source software for Parkinson’s speech analysis[J]. Digital Signal Processing, 2018, 77: 207–221. doi:  10.1016/j.dsp.2017.07.004. | 
| [22] | CAI D, HE X, HAN J,  et al. Orthogonal Laplacianfaces for face recognition[J]. IEEE Transactions on Image Processing, 2006, 15(11): 3608–3614. doi:  10.1109/TIP.2006.881945. | 
| [23] | BOUSMALIS K, TRIGEORGIS G, SILBERMAN N,    et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351. doi:  10.5555/3157096.3157135. | 
| [24] | LI Yiyang, WANG Shengsheng, WANG Bilin,  et al. Transferable feature filtration network for multi-source domain adaptation[J]. Knowledge-Based Systems, 2023, 260: 110113. doi:  10.1016/J.KNOSYS.2022.110113. | 
| [25] | SONG L, SMOLA A, GRETTON A,    et al. Supervised feature selection via dependence estimation[C]. The 24th International Conference on Machine Learning, 2007: 823–830. doi:  10.1145/1273496.1273600. | 
