Citation: | LIU SongZuo, WANG Qian, LI Lei, LI Hui, YU Yun. Gated Recurrent Unit Network of Particle Swarm Optimization for Drifting Buoy Trajectory Prediction[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3295-3304. doi: 10.11999/JEIT230945 |
[1] |
蔡树群, 张文静, 王盛安. 海洋环境观测技术研究进展[J]. 热带海洋学报, 2007, 26(3): 76–81. doi: 10.3969/j.issn.1009-5470.2007.03.014.
CAI Shuqun, ZHANG Wenjing, and WANG Sheng’an. An advance in marine environment observation technology[J]. Journal of Tropical Oceanography, 2007, 26(3): 76–81. doi: 10.3969/j.issn.1009-5470.2007.03.014.
|
[2] |
ZHAO Zhiqiang. Research on monitoring technology of marine oil spill environment based on LoT+GIS[C]. 2022 International Conference on Educational Informatization, E-commerce and Information System, Macao, China, 2022: 134–138. doi: 10.25236/iceieis.2022.031.
|
[3] |
WANG Wei, SU Jintao, YU Xiaohong, et al. Research on attitude stability of AUV towed communication buoy[C]. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Beijing, China, 2022: 1450–1455. doi: 10.1109/IAEAC54830.2022.9929985.
|
[4] |
ROH H, JOE H, and YU S C. Modeling trajectory characteristic of moor-less buoy system under ocean current[C]. 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 2016: 307–310. doi: 10.1109/AUV.2016.7778688.
|
[5] |
ZHU Kui, MU Lin, and XIA Xiaoyu. An ensemble trajectory prediction model for maritime search and rescue and oil spill based on sub-grid velocity model[J]. Ocean Engineering, 2021, 236: 109513. doi: 10.1016/j.oceaneng.2021.109513.
|
[6] |
龙绍桥, 娄安刚, 谭海涛, 等. 海上溢油粒子追踪预测模型中的两种数值方法比较[J]. 中国海洋大学学报, 2006, 36(S): 157–162. doi: 10.3969/j.issn.1672-5174.2006.z1.031.
LONG Shaoqiao, LOU Angang, TAN Haitao, et al. Comparison of two numerical methods for solving the model for oil spill particle trajectory on the sea[J]. Periodical of Ocean University of China, 2006, 36(S): 157–162. doi: 10.3969/j.issn.1672-5174.2006.z1.031.
|
[7] |
TENG Fei, DING Zhaohao, HU Zechun, et al. Technical review on advanced approaches for electric vehicle charging demand management, part I: Applications in electric power market and renewable energy integration[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5684–5694. doi: 10.1109/TIA.2020.2993991.
|
[8] |
CHEN Shuo, LIN Rongheng, and ZENG Wei. Short-term load forecasting method based on ARIMA and LSTM[C]. 2022 IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, 2022: 1913–1917. doi: 10.1109/ICCT56141.2022.10073051.
|
[9] |
ZHANG Jing, WU Yingnian, and JIAO Shuai. Research on trajectory tracking algorithm based on LSTM-UKF[C]. 2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), Beijing, China, 2021: 61–65. doi: 10.1109/IC-NIDC54101.2021.9660592.
|
[10] |
XING Yang, LV Chen, and CAO Dongpu. Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1341–1352. doi: 10.1109/TVT.2019.2960110.
|
[11] |
WU Yuankang, ZHONG Youjing, and PHAN Q T. Overview of day-ahead solar power forecasts based on weather classifications[C]. 2023 IEEE/IAS 59th Industrial and Commercial Power Systems Technical Conference (I&CPS), Las Vegas, USA, 2023: 1–8. doi: 10.1109/ICPS57144.2023.10142132.
|
[12] |
HELMY I, TARAFDER P, and CHOI W. LSTM-GRU model-based channel prediction for one-bit massive MIMO system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 11053–11057. doi: 10.1109/TVT.2023.3262951.
|
[13] |
HAN Ping, WANG Wenqing, SHI Qingyan, et al. Real-time short- term trajectory prediction based on GRU neural network[C]. IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), San Diego, USA, 2019: 1–8. doi: 10.1109/DASC43569.2019.9081618.
|
[14] |
CHEN Zexuan and WANG Lan. Aircraft trajectory prediction model based on improved GRU structure[C]. 2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 2023: 225–228. doi: 10.1109/ICCECE58074.2023.10135263.
|
[15] |
AÇIKKAR M and ALTUNKOL Y. A novel hybrid PSO- and GS-based hyperparameter optimization algorithm for support vector regression[J]. Neural Computing and Applications, 2023, 35(27): 19961–19977. doi: 10.1007/s00521-023-08805-5.
|
[16] |
KALITA D J, SINGH V P, and KUMAR V. A lightweight knowledge-based PSO for SVM hyper-parameters tuning in a dynamic environment[J]. The Journal of Supercomputing, 2023, 79(16): 18777–18799. doi: 10.1007/s11227-023-05385-y.
|
[17] |
KENNEDY J and EBERHART R. Particle swarm optimization[C]. ICNN’95 - International Conference on Neural Networks, Perth, Australia, 1995: 1942–1948. doi: 10.1109/ICNN.1995.488968.
|
[18] |
GUPTA A, JOHNSON J, FEI-FEI L, et al. Social GAN: Socially acceptable trajectories with generative adversarial networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2255–2264. doi: 10.1109/CVPR.2018.00240.
|
[19] |
ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: Human trajectory prediction in crowded spaces[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 961–971. doi: 10.1109/CVPR.2016.110.
|
[20] |
SHI Yuhui and EBERHART R. A modified particle swarm optimizer[C]. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat No98TH8360), Anchorage, USA, 1998: 69–73. doi: 10.1109/ICEC.1998.699146.
|
[21] |
CLERC M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[C]. The 1999 Congress on Evolutionary Computation-CEC99 (Cat No 99TH8406), Washington, USA, 1999: 1951–1957. doi: 10.1109/CEC.1999.785513.
|
[22] |
YE Zehao, SONG Yawei, HUA Liangfa, et al. Radar target tracking based on some multi-dimensional adaptive UKF[C]. 2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT), Wuhan, China, 2022: 28–33. doi: 10.1109/ICFEICT57213.2022.00013.
|