| Citation: | ZHOU Weixin, GAO Zhaogang, XIAO Wan'ang. Intelligent Heart Sound Abnormal Diagnosis Chip Based on LSTM for Wearable Applications[J]. Journal of Electronics & Information Technology, 2024, 46(2): 555-563. doi: 10.11999/JEIT230934 | 
 
	                | [1] | WHO. The top 10 causes of death[EB/OL]. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death, 2020. | 
| [2] | WANG Fei, SYEDA-MAHMOOD T, and BEYMER D. Finding disease similarity by combining ECG with heart auscultation sound[C]. 2007 Computers in Cardiology, Durham, USA, 2007: 261–264. doi:  10.1109/CIC.2007.4745471. | 
| [3] | DOMINGUEZ-MORALES J P, JIMENEZ-FERNANDEZ A F, DOMINGUEZ-MORALES M J,  et al. Deep neural networks for the recognition and classification of heart murmurs using neuromorphic auditory sensors[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(1): 24–34. doi:  10.1109/TBCAS.2017.2751545. | 
| [4] | EJAZ K, NORDEHN G, ALBA-FLORES R,    et al. A heart murmur detection system using spectrograms and artificial neural networks[C]. Proceedings of the Second IASTED International Conference on Circuits, Signals, and Systems, Clearwater Beach, USA, 2004: 374–379. | 
| [5] | MILANI M G M, ABAS P E, DE SILVA L C,  et al. Abnormal heart sound classification using phonocardiography signals[J]. Smart Health, 2021, 21: 100194. doi:  10.1016/j.smhl.2021.100194. | 
| [6] | MILANI M G M, ABAS P E, and DE SILVA L C. A critical review of heart sound signal segmentation algorithms[J]. Smart Health, 2022, 24: 100283. doi:  10.1016/j.smhl.2022.100283. | 
| [7] | XU Weize, YU Kai, YE Jingjing,  et al. Automatic pediatric congenital heart disease classification based on heart sound signal[J]. Artificial Intelligence in Medicine, 2022, 126: 102257. doi:  10.1016/j.artmed.2022.102257. | 
| [8] | ZHENG Yineng, GUO Xingming, WANG Yingying,  et al. A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification[J]. Physiological Measurement, 2022, 43(6): 065002. doi:  10.1088/1361-6579/ac6d40. | 
| [9] | RENNA F, OLIVEIRA J, and COIMBRA M T. Deep convolutional neural networks for heart sound segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(6): 2435–2445. doi:  10.1109/JBHI.2019.2894222. | 
| [10] | TARIQ Z, SHAH S K, and LEE Y. Feature-based fusion using CNN for lung and heart sound classification[J]. Sensors, 2022, 22(4): 1521. doi:  10.3390/s22041521. | 
| [11] | DENG Muqing, MENG Tingting, CAO Jiuwen,  et al. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks[J]. Neural Networks, 2020, 130: 22–32. doi:  10.1016/j.neunet.2020.06.015. | 
| [12] | CHEN Wei, SUN Qiang, CHEN Xiaomin,  et al. Deep learning methods for heart sounds classification: A systematic review[J]. Entropy, 2021, 23(6): 667. doi:  10.3390/e23060667. | 
| [13] | SHI K, SCHELLENBERGER S, WEBER L,    et al. Segmentation of radar-recorded heart sound signals using bidirectional LSTM networks[C]. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019: 6677–6680. doi:  10.1109/EMBC.2019.8857863. | 
| [14] | LEE S H, KIM Y S, and YEO W H. Advances in microsensors and wearable bioelectronics for digital stethoscopes in health monitoring and disease diagnosis[J]. Advanced Healthcare Materials, 2021, 10(22): 2101400. doi:  10.1002/adhm.202101400. | 
| [15] | WEI Min, SUN Kexue, WANG Chenxi,    et al. A design and implementation for heart sound detection instrument based on FPGA[C]. 2015 3rd International Conference on Machinery, Materials and Information Technology Applications, Qingdao, China, 2015: 278–282. doi:  10.2991/icmmita-15.2015.55. | 
| [16] | JUSAK J, PUSPASARI I, and KUSUMAWATI W I. A semi-automatic heart sounds identification model and its implementation in internet of things devices[J]. Advances in Electrical and Computer Engineering, 2021, 21(1): 45–56. doi:  10.4316/AECE.2021.01005. | 
| [17] | LI Tao, YIN Yibo, MA Kainan,  et al. Lightweight end-to-end neural network model for automatic heart sound classification[J]. Information, 2021, 12(2): 54. doi:  10.3390/info12020054. | 
| [18] | WANG Jing, CHEN Ping, ZHANG Cheng,    et al. Corona virus disease 2019 respiratory cycle detection based on convolutional neural network[C]. 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), Berlin, Germany, 2021: 1–4. doi:  10.1109/BioCAS49922.2021.9644970. | 
| [19] | YASEEN, SON G Y, and KWON S. Classification of heart sound signal using multiple features[J]. Applied Sciences, 2018, 8(12): 2344. doi:  10.3390/app8122344. | 
| [20] | GHOSH S K, PONNALAGU R N, TRIPATHY R K,  et al. Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals[J]. Computers in Biology and Medicine, 2020, 118: 103632. doi:  10.1016/j.compbiomed.2020.103632. | 
| [21] | ALKHODARI M and FRAIWAN L. Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings[J]. Computer Methods and Programs in Biomedicine, 2021, 200: 105940. doi:  10.1016/j.cmpb.2021.105940. | 
| [22] | KAO Chaoyang, KUO H C, CHEN Jianwen,    et al. RNNAccel: A fusion recurrent neural network accelerator for edge intelligence[EB/OL]. https://arxiv.org/abs/2010.13311, 2020. | 
| [23] | CHEN Chixiao, DING Hongwei, PENG Huwan,    et al. OCEAN: An on-chip incremental-learning enhanced processor with gated recurrent neural network accelerators[C]. 43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 2017: 259–262. doi:  10.1109/ESSCIRC.2017.8094575. | 
