Citation: | ZHOU Weixin, GAO Zhaogang, XIAO Wan'ang. Intelligent Heart Sound Abnormal Diagnosis Chip Based on LSTM for Wearable Applications[J]. Journal of Electronics & Information Technology, 2024, 46(2): 555-563. doi: 10.11999/JEIT230934 |
[1] |
WHO. The top 10 causes of death[EB/OL]. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death, 2020.
|
[2] |
WANG Fei, SYEDA-MAHMOOD T, and BEYMER D. Finding disease similarity by combining ECG with heart auscultation sound[C]. 2007 Computers in Cardiology, Durham, USA, 2007: 261–264. doi: 10.1109/CIC.2007.4745471.
|
[3] |
DOMINGUEZ-MORALES J P, JIMENEZ-FERNANDEZ A F, DOMINGUEZ-MORALES M J, et al. Deep neural networks for the recognition and classification of heart murmurs using neuromorphic auditory sensors[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12(1): 24–34. doi: 10.1109/TBCAS.2017.2751545.
|
[4] |
EJAZ K, NORDEHN G, ALBA-FLORES R, et al. A heart murmur detection system using spectrograms and artificial neural networks[C]. Proceedings of the Second IASTED International Conference on Circuits, Signals, and Systems, Clearwater Beach, USA, 2004: 374–379.
|
[5] |
MILANI M G M, ABAS P E, DE SILVA L C, et al. Abnormal heart sound classification using phonocardiography signals[J]. Smart Health, 2021, 21: 100194. doi: 10.1016/j.smhl.2021.100194.
|
[6] |
MILANI M G M, ABAS P E, and DE SILVA L C. A critical review of heart sound signal segmentation algorithms[J]. Smart Health, 2022, 24: 100283. doi: 10.1016/j.smhl.2022.100283.
|
[7] |
XU Weize, YU Kai, YE Jingjing, et al. Automatic pediatric congenital heart disease classification based on heart sound signal[J]. Artificial Intelligence in Medicine, 2022, 126: 102257. doi: 10.1016/j.artmed.2022.102257.
|
[8] |
ZHENG Yineng, GUO Xingming, WANG Yingying, et al. A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification[J]. Physiological Measurement, 2022, 43(6): 065002. doi: 10.1088/1361-6579/ac6d40.
|
[9] |
RENNA F, OLIVEIRA J, and COIMBRA M T. Deep convolutional neural networks for heart sound segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(6): 2435–2445. doi: 10.1109/JBHI.2019.2894222.
|
[10] |
TARIQ Z, SHAH S K, and LEE Y. Feature-based fusion using CNN for lung and heart sound classification[J]. Sensors, 2022, 22(4): 1521. doi: 10.3390/s22041521.
|
[11] |
DENG Muqing, MENG Tingting, CAO Jiuwen, et al. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks[J]. Neural Networks, 2020, 130: 22–32. doi: 10.1016/j.neunet.2020.06.015.
|
[12] |
CHEN Wei, SUN Qiang, CHEN Xiaomin, et al. Deep learning methods for heart sounds classification: A systematic review[J]. Entropy, 2021, 23(6): 667. doi: 10.3390/e23060667.
|
[13] |
SHI K, SCHELLENBERGER S, WEBER L, et al. Segmentation of radar-recorded heart sound signals using bidirectional LSTM networks[C]. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019: 6677–6680. doi: 10.1109/EMBC.2019.8857863.
|
[14] |
LEE S H, KIM Y S, and YEO W H. Advances in microsensors and wearable bioelectronics for digital stethoscopes in health monitoring and disease diagnosis[J]. Advanced Healthcare Materials, 2021, 10(22): 2101400. doi: 10.1002/adhm.202101400.
|
[15] |
WEI Min, SUN Kexue, WANG Chenxi, et al. A design and implementation for heart sound detection instrument based on FPGA[C]. 2015 3rd International Conference on Machinery, Materials and Information Technology Applications, Qingdao, China, 2015: 278–282. doi: 10.2991/icmmita-15.2015.55.
|
[16] |
JUSAK J, PUSPASARI I, and KUSUMAWATI W I. A semi-automatic heart sounds identification model and its implementation in internet of things devices[J]. Advances in Electrical and Computer Engineering, 2021, 21(1): 45–56. doi: 10.4316/AECE.2021.01005.
|
[17] |
LI Tao, YIN Yibo, MA Kainan, et al. Lightweight end-to-end neural network model for automatic heart sound classification[J]. Information, 2021, 12(2): 54. doi: 10.3390/info12020054.
|
[18] |
WANG Jing, CHEN Ping, ZHANG Cheng, et al. Corona virus disease 2019 respiratory cycle detection based on convolutional neural network[C]. 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), Berlin, Germany, 2021: 1–4. doi: 10.1109/BioCAS49922.2021.9644970.
|
[19] |
YASEEN, SON G Y, and KWON S. Classification of heart sound signal using multiple features[J]. Applied Sciences, 2018, 8(12): 2344. doi: 10.3390/app8122344.
|
[20] |
GHOSH S K, PONNALAGU R N, TRIPATHY R K, et al. Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals[J]. Computers in Biology and Medicine, 2020, 118: 103632. doi: 10.1016/j.compbiomed.2020.103632.
|
[21] |
ALKHODARI M and FRAIWAN L. Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings[J]. Computer Methods and Programs in Biomedicine, 2021, 200: 105940. doi: 10.1016/j.cmpb.2021.105940.
|
[22] |
KAO Chaoyang, KUO H C, CHEN Jianwen, et al. RNNAccel: A fusion recurrent neural network accelerator for edge intelligence[EB/OL]. https://arxiv.org/abs/2010.13311, 2020.
|
[23] |
CHEN Chixiao, DING Hongwei, PENG Huwan, et al. OCEAN: An on-chip incremental-learning enhanced processor with gated recurrent neural network accelerators[C]. 43rd IEEE European Solid State Circuits Conference, Leuven, Belgium, 2017: 259–262. doi: 10.1109/ESSCIRC.2017.8094575.
|