Citation: | LIN Guangfeng, WU Na, HE Menglan, ZHANG Erhu, SUN Qiang. Damaged Inscription Recognition Based on Hierarchical Decomposition Embedding and Bipartite Graph[J]. Journal of Electronics & Information Technology, 2024, 46(2): 564-573. doi: 10.11999/JEIT230893 |
[1] |
SHI Baoguang, BAI Xiang, and YAO Cong. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11): 2298–2304. doi: 10.1109/TPAMI.2016.2646371.
|
[2] |
BUŠTA M, NEUMANN L, and MATAS J. Deep TextSpotter: An end-to-end trainable scene text localization and recognition framework[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2204–2212. doi: 10.1109/ICCV.2017.242.
|
[3] |
LIU Xuebo, LIANG Ding, YAN Shi, et al. FOTS: Fast oriented text spotting with a unified network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5676–5685. doi: 10.1109/CVPR.2018.00595.
|
[4] |
LIU Yuliang, CHEN Hao, SHEN Chunhua, et al. ABCNet: Real-time scene text spotting with adaptive Bezier-curve network[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9809–9818. doi: 10.1109/CVPR42600.2020.00983.
|
[5] |
SHI Baoguang, WANG Xinggang, LYU Pengyuan, et al. Robust scene text recognition with automatic rectification[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4168–4176. doi: 10.1109/CVPR.2016.452.
|
[6] |
LI Hui, WANG Peng, SHEN Chunhua, et al. Show, attend and read: A simple and strong baseline for irregular text recognition[C]. The 33rd AAAI conference on artificial intelligence, Honolulu, USA, 2019: 8610–8617. doi: 10.1609/aaai.v33i01.33018610.
|
[7] |
QIAO Zhi, ZHOU Yu, YANG Dongbao, et al. SEED: Semantics enhanced encoder-decoder framework for scene text recognition[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13528–13537. doi: 10.1109/CVPR42600.2020.01354.
|
[8] |
HE Tong, TIAN Zhi, HUANG Weilin, et al. An end-to-end TextSpotter with explicit alignment and attention[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5020–5029. doi: 10.1109/CVPR.2018.00527.
|
[9] |
WANG Wenhai, XIE Enze, LI Xiang, et al. PAN++: Towards efficient and accurate end-to-end spotting of arbitrarily-shaped text[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5349–5367. doi: 10.1109/TPAMI.2021.3077555.
|
[10] |
LIAO Minghui, ZHANG Jian, WAN Zhaoyi, et al. Scene text recognition from two-dimensional perspective[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 8714–8721. doi: 10.1609/aaai.v33i01.33018714.
|
[11] |
YU Deli, LI Xuan, ZHANG Chengquan, et al. Towards accurate scene text recognition with semantic reasoning networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12113–12122. doi: 10.1109/CVPR42600.2020.01213.
|
[12] |
LYU Pengyuan, LIAO Minghui, YAO Cong, et al. Mask TextSpotter: An end-to-end trainable neural network for spotting text with arbitrary shapes[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 67–83. doi: 10.1007/978-3-030-01264-9_5.
|
[13] |
LIU Chang, YANG Chun, QIN Haibo, et al. Towards open-set text recognition via label-to-prototype learning[J]. Pattern Recognition, 2023, 134: 109109. doi: 10.1016/j.patcog.2022.109109.
|
[14] |
LIU Chang, YANG Chun, and YIN Xucheng. Open-set text recognition via character-context decoupling[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 4523–4532. doi: 10.1109/CVPR52688.2022.00448.
|
[15] |
LI Yunqing, ZHU Yixing, DU Jun, et al. Radical counter network for robust Chinese character recognition[C]. The 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 4191–4197. doi: 10.1109/ICPR48806.2021.941291.
|
[16] |
WANG Wenchao, ZHANG Jianshu, DU Jun, et al. DenseRAN for offline handwritten Chinese character recognition[C]. 2018 16th International Conference on Frontiers in Handwriting Recognition, Niagara Falls, USA, 2018: 104–109. doi: 10.1109/ICFHR-2018.2018.00027.
|
[17] |
ZHANG Jianshu, ZHU Yixing, DU Jun, et al. Radical analysis network for zero-shot learning in printed Chinese character recognition[C]. 2018 IEEE International Conference on Multimedia and Expo, San Diego, USA, 2018: 1–6. doi: 10.1109/ICME.2018.8486456.
|
[18] |
WU Changjie, WANG Zirui, DU Jun, et al. Joint spatial and radical analysis network for distorted Chinese character recognition[C]. 2019 International Conference on Document Analysis and Recognition Workshops, Sydney, Australia, 2019: 122–127. doi: 10.1109/ICDARW.2019.40092.
|
[19] |
WANG Tianwei, XIE Zecheng, LI Zhe, et al. Radical aggregation network for few-shot offline handwritten Chinese character recognition[J]. Pattern Recognition Letters, 2019, 125: 821–827. doi: 10.1016/j.patrec.2019.08.005.
|
[20] |
CAO Zhong, LU Jiang, CUI Sen, et al. Zero-shot handwritten Chinese character recognition with hierarchical decomposition embedding[J]. Pattern Recognition, 2020, 107: 107488. doi: 10.1016/j.patcog.2020.107488.
|
[21] |
HUANG Yuhao, JIN Lianwen, and PENG Dezhi. Zero-shot Chinese text recognition via matching class embedding[C]. The 16th International Conference on Document Analysis and Recognition, Lausanne, Switzerland, 2021: 127–141. doi: 10.1007/978-3-030-86334-0_9.
|
[22] |
YANG Chen, WANG Qing, DU Jun, et al. A transformer-based radical analysis network for Chinese character recognition[C]. The 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 3714–3719. doi: 10.1109/ICPR48806.2021.941243.
|
[23] |
DIAO Xiaolei, SHI Daqian, TANG Hao, et al. RZCR: Zero-shot Character Recognition via Radical-based Reasoning[C]. The Thirty-Second International Joint Conference on Artificial Intelligence, Macao, China, 2023.
|
[24] |
ZENG Jinshan, XU Ruiying, WU Yu, et al. STAR: Zero-shot Chinese character recognition with stroke-and radical-level decompositions[EB/OL]. https://arxiv.org/abs/2210.08490, 2022.
|
[25] |
GAN Ji, WANG Weiqiang, and LU Ke. Characters as graphs: Recognizing online handwritten Chinese characters via spatial graph convolutional network[EB/OL]. https://arxiv.org/abs/2004.09412, 2020.
|
[26] |
GAN Ji, WANG Weiqiang, and LU Ke. A new perspective: Recognizing online handwritten Chinese characters via 1-dimensional CNN[J]. Information Sciences, 2019, 478: 375–390. doi: 10.1016/j.ins.2018.11.035.
|
[27] |
CHEN Jingye, LI Bin, and XUE Xiangyang. Zero-shot Chinese character recognition with stroke-level decomposition[EB/OL]. https://arxiv.org/abs/2106.11613, 2021.
|
[28] |
YU Haiyang, CHEN Jingye, LI Bin, et al. Chinese character recognition with radical-structured stroke trees[EB/OL]. https://arxiv.org/abs/2211.13518, 2022.
|
[29] |
CHEN Zongze, YANG Wenxia, and LI Xin. Stroke-based autoencoders: Self-supervised learners for efficient zero-shot Chinese character recognition[J]. Applied Sciences, 2023, 13(3): 1750. doi: 10.3390/app13031750.
|
[30] |
杨春, 刘畅, 方治屿, 等. 开放集文字识别技术[J]. 中国图象图形学报, 2023, 28(6): 1767–1791. doi: 10.11834/jig.230018.
YANG Chun, LIU Chang, FANG Zhiyu, et al. Open set text recognition technology[J]. Journal of Image and Graphics, 2023, 28(6): 1767–1791. doi: 10.11834/jig.230018.
|
[31] |
HAMILTON W L, YING Z, and LESKOVEC J. Inductive representation learning on large graphs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1025–1035.
|
[32] |
YOU Jiaxuan, MA Xiaobai, DING D Y, et al. Handling missing data with graph representation learning[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1601.
|
[33] |
YUAN Tailing, ZHU Zhe, XU Kun, et al. A large Chinese text dataset in the wild[J]. Journal of Computer Science and Technology, 2019, 34(3): 509–521. doi: 10.1007/s11390-019-1923-y.
|
[34] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708. doi: 10.1109/CVPR.2017.243.
|
[35] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|