| Citation: | LIN Guangfeng, WU Na, HE Menglan, ZHANG Erhu, SUN Qiang. Damaged Inscription Recognition Based on Hierarchical Decomposition Embedding and Bipartite Graph[J]. Journal of Electronics & Information Technology, 2024, 46(2): 564-573. doi: 10.11999/JEIT230893 | 
 
	                | [1] | SHI Baoguang, BAI Xiang, and YAO Cong. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(11): 2298–2304. doi:  10.1109/TPAMI.2016.2646371. | 
| [2] | BUŠTA M, NEUMANN L, and MATAS J. Deep TextSpotter: An end-to-end trainable scene text localization and recognition framework[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2204–2212. doi:  10.1109/ICCV.2017.242. | 
| [3] | LIU Xuebo, LIANG Ding, YAN Shi,    et al. FOTS: Fast oriented text spotting with a unified network[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5676–5685. doi:  10.1109/CVPR.2018.00595. | 
| [4] | LIU Yuliang, CHEN Hao, SHEN Chunhua,    et al. ABCNet: Real-time scene text spotting with adaptive Bezier-curve network[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 9809–9818. doi:  10.1109/CVPR42600.2020.00983. | 
| [5] | SHI Baoguang, WANG Xinggang, LYU Pengyuan,    et al. Robust scene text recognition with automatic rectification[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 4168–4176. doi:  10.1109/CVPR.2016.452. | 
| [6] | LI Hui, WANG Peng, SHEN Chunhua,    et al. Show, attend and read: A simple and strong baseline for irregular text recognition[C]. The 33rd AAAI conference on artificial intelligence, Honolulu, USA, 2019: 8610–8617. doi:  10.1609/aaai.v33i01.33018610. | 
| [7] | QIAO Zhi, ZHOU Yu, YANG Dongbao,    et al. SEED: Semantics enhanced encoder-decoder framework for scene text recognition[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13528–13537. doi:  10.1109/CVPR42600.2020.01354. | 
| [8] | HE Tong, TIAN Zhi, HUANG Weilin,    et al. An end-to-end TextSpotter with explicit alignment and attention[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 5020–5029. doi:  10.1109/CVPR.2018.00527. | 
| [9] | WANG Wenhai, XIE Enze, LI Xiang,  et al. PAN++: Towards efficient and accurate end-to-end spotting of arbitrarily-shaped text[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5349–5367. doi:  10.1109/TPAMI.2021.3077555. | 
| [10] | LIAO Minghui, ZHANG Jian, WAN Zhaoyi,    et al. Scene text recognition from two-dimensional perspective[C]. The 33rd AAAI Conference on Artificial Intelligence, Honolulu, USA, 2019: 8714–8721. doi:  10.1609/aaai.v33i01.33018714. | 
| [11] | YU Deli, LI Xuan, ZHANG Chengquan,    et al. Towards accurate scene text recognition with semantic reasoning networks[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12113–12122. doi:  10.1109/CVPR42600.2020.01213. | 
| [12] | LYU Pengyuan, LIAO Minghui, YAO Cong,    et al. Mask TextSpotter: An end-to-end trainable neural network for spotting text with arbitrary shapes[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 67–83. doi:  10.1007/978-3-030-01264-9_5. | 
| [13] | LIU Chang, YANG Chun, QIN Haibo,  et al. Towards open-set text recognition via label-to-prototype learning[J]. Pattern Recognition, 2023, 134: 109109. doi:  10.1016/j.patcog.2022.109109. | 
| [14] | LIU Chang, YANG Chun, and YIN Xucheng. Open-set text recognition via character-context decoupling[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 4523–4532. doi:  10.1109/CVPR52688.2022.00448. | 
| [15] | LI Yunqing, ZHU Yixing, DU Jun,    et al. Radical counter network for robust Chinese character recognition[C]. The 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 4191–4197. doi:  10.1109/ICPR48806.2021.941291. | 
| [16] | WANG Wenchao, ZHANG Jianshu, DU Jun,    et al. DenseRAN for offline handwritten Chinese character recognition[C]. 2018 16th International Conference on Frontiers in Handwriting Recognition, Niagara Falls, USA, 2018: 104–109. doi:  10.1109/ICFHR-2018.2018.00027. | 
| [17] | ZHANG Jianshu, ZHU Yixing, DU Jun,    et al. Radical analysis network for zero-shot learning in printed Chinese character recognition[C]. 2018 IEEE International Conference on Multimedia and Expo, San Diego, USA, 2018: 1–6. doi:  10.1109/ICME.2018.8486456. | 
| [18] | WU Changjie, WANG Zirui, DU Jun,    et al. Joint spatial and radical analysis network for distorted Chinese character recognition[C]. 2019 International Conference on Document Analysis and Recognition Workshops, Sydney, Australia, 2019: 122–127. doi:  10.1109/ICDARW.2019.40092. | 
| [19] | WANG Tianwei, XIE Zecheng, LI Zhe,  et al. Radical aggregation network for few-shot offline handwritten Chinese character recognition[J]. Pattern Recognition Letters, 2019, 125: 821–827. doi:  10.1016/j.patrec.2019.08.005. | 
| [20] | CAO Zhong, LU Jiang, CUI Sen,  et al. Zero-shot handwritten Chinese character recognition with hierarchical decomposition embedding[J]. Pattern Recognition, 2020, 107: 107488. doi:  10.1016/j.patcog.2020.107488. | 
| [21] | HUANG Yuhao, JIN Lianwen, and PENG Dezhi. Zero-shot Chinese text recognition via matching class embedding[C]. The 16th International Conference on Document Analysis and Recognition, Lausanne, Switzerland, 2021: 127–141. doi:  10.1007/978-3-030-86334-0_9. | 
| [22] | YANG Chen, WANG Qing, DU Jun,    et al. A transformer-based radical analysis network for Chinese character recognition[C]. The 25th International Conference on Pattern Recognition, Milan, Italy, 2021: 3714–3719. doi:  10.1109/ICPR48806.2021.941243. | 
| [23] | DIAO Xiaolei, SHI Daqian, TANG Hao,    et al. RZCR: Zero-shot Character Recognition via Radical-based Reasoning[C]. The Thirty-Second International Joint Conference on Artificial Intelligence, Macao, China, 2023. | 
| [24] | ZENG Jinshan, XU Ruiying, WU Yu,    et al. STAR: Zero-shot Chinese character recognition with stroke-and radical-level decompositions[EB/OL]. https://arxiv.org/abs/2210.08490, 2022. | 
| [25] | GAN Ji, WANG Weiqiang, and LU Ke. Characters as graphs: Recognizing online handwritten Chinese characters via spatial graph convolutional network[EB/OL]. https://arxiv.org/abs/2004.09412, 2020. | 
| [26] | GAN Ji, WANG Weiqiang, and LU Ke. A new perspective: Recognizing online handwritten Chinese characters via 1-dimensional CNN[J]. Information Sciences, 2019, 478: 375–390. doi:  10.1016/j.ins.2018.11.035. | 
| [27] | CHEN Jingye, LI Bin, and XUE Xiangyang. Zero-shot Chinese character recognition with stroke-level decomposition[EB/OL]. https://arxiv.org/abs/2106.11613, 2021. | 
| [28] | YU Haiyang, CHEN Jingye, LI Bin,    et al. Chinese character recognition with radical-structured stroke trees[EB/OL]. https://arxiv.org/abs/2211.13518, 2022. | 
| [29] | CHEN Zongze, YANG Wenxia, and LI Xin. Stroke-based autoencoders: Self-supervised learners for efficient zero-shot Chinese character recognition[J]. Applied Sciences, 2023, 13(3): 1750. doi:  10.3390/app13031750. | 
| [30] | 杨春, 刘畅, 方治屿, 等. 开放集文字识别技术[J]. 中国图象图形学报, 2023, 28(6): 1767–1791. doi:  10.11834/jig.230018. YANG Chun, LIU Chang, FANG Zhiyu,  et al. Open set text recognition technology[J]. Journal of Image and Graphics, 2023, 28(6): 1767–1791. doi:  10.11834/jig.230018. | 
| [31] | HAMILTON W L, YING Z, and LESKOVEC J. Inductive representation learning on large graphs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1025–1035. | 
| [32] | YOU Jiaxuan, MA Xiaobai, DING D Y,    et al. Handling missing data with graph representation learning[C]. The 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 1601. | 
| [33] | YUAN Tailing, ZHU Zhe, XU Kun,  et al. A large Chinese text dataset in the wild[J]. Journal of Computer Science and Technology, 2019, 34(3): 509–521. doi:  10.1007/s11390-019-1923-y. | 
| [34] | HUANG Gao, LIU Zhuang, VAN DER MAATEN L,    et al. Densely connected convolutional networks[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700–4708. doi:  10.1109/CVPR.2017.243. | 
| [35] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing,    et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi:  10.1109/CVPR.2016.90. | 
