Citation: | ZHAO Keqin. Some Applications and Progress of Set Pair Theory in Artificial Intelligence[J]. Journal of Electronics & Information Technology, 2024, 46(2): 383-407. doi: 10.11999/JEIT230889 |
[1] |
赵克勤. 集对分析与熵的研究[J]. 浙江大学学报, 1992, 6(2): 65–72.
ZHAO Keqin. Studies on set pair analysis and entropy[J]. Journal of Zhejiang University, 1992, 6(2): 65–72.
|
[2] |
赵克勤. 集对分析及其初步应用[J]. 大自然探索, 1994, 13(1): 67–72.
ZHAO Keqin. Set pair analysis and its preliminary application[J]. Exploration of Nature, 1994, 13(1): 67–72.
|
[3] |
赵克勤. 集对分析对不确定性的描述和处理[J]. 信息与控制, 1995, 24(3): 162–166. doi: 10.13976/j.cnki.xk.1995.03.006.
ZHAO Keqin. Disposal and description of uncertainties based on the set pair analysis[J]. Information and Control, 1995, 24(3): 162–166. doi: 10.13976/j.cnki.xk.1995.03.006.
|
[4] |
赵克勤, 宣爱理. 集对论——一种新的不确定性理论方法与应用[J]. 系统工程, 1996, 14(1): 18–23,72. doi: CNKI:SUN:GCXT.0.1996-01-003.
ZHAO Keqin and XUAN Aili. Set pair theory—a new theory method of non-define and its applications[J]. Systems Engineering, 1996, 14(1): 18–23,72. doi: CNKI:SUN:GCXT.0.1996-01-003.
|
[5] |
赵克勤. 集对分析及其初步应用[M]. 杭州: 浙江科学技术出版社, 2000.
ZHAO Keqin. Set Pair Analysis and Its Preliminary Application[M]. Hangzhou: Zhejiang Science and Technology Press, 2000.
|
[6] |
https://kns.cnki.net/kns8/defaultresult/index.
|
[7] |
蒋云良, 赵克勤. 集对分析在人工智能中的应用与进展[J]. 智能系统学报, 2019, 14(1): 28–43. doi: 10.11992/tis.201803030.
JIANG Yunliang and ZHAO Keqin. Application and development of set pair analysis in artificial intelligence: A survey[J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 28–43. doi: 10.11992/tis.201803030.
|
[8] |
蒋云良, 赵克勤. 人工智能集对分析[M]. 北京: 科学出版社, 2017: 45–60.
JIANG Yunliang and ZHAO Keqin. Artificial Intelligence Set Pair Analysis[M]. Beijing: Science Press, 2017: 45–60.
|
[9] |
赵克勤. 二元联系数 A+ Bi的理论基础与基本算法及在人工智能中的应用[J]. 智能系统学报, 2008, 3(6): 476–486. doi: 10.3969/j.issn.1673-4785.2008.06.002.
ZHAO Keqin. The theoretical basis and basic algorithm of binary connection A + Bi and its application in AI[J]. CAAI Transactions on Intelligent Systems, 2008, 3(6): 476–486. doi: 10.3969/j.issn.1673-4785.2008.06.002.
|
[10] |
赵克勤. 自然辩证法有数学模型吗?[J]. 自然辩证法报, 1988(10).
ZHAO Keqin. Is there a mathematical model for Dialectic of nature?[J]. Dialectic of Nature, 1988(10).
|
[11] |
赵克勤. 咬住自然辩证法不放松[J]. 自然辩证法研究, 1997, 13(3): 71–72. doi: CNKI:SUN:ZRBZ.0.1997-03-020.
ZHAO Keqin. Seize dialectic of nature and don't relax[J]. Studies in Dialectics of Nature, 1997, 13(3): 71–72. doi: CNKI:SUN:ZRBZ.0.1997-03-020.
|
[12] |
赵克勤. 自然辩证法可以称“联系科学”吗?——从《自然辩证法通讯》的副标题说起[J]. 自然辩证法通讯, 2008, 30(6): 99–101.
ZHAO Keqin. Can Dialectic of nature be called linked science? -- Starting from the subtitle of Communication of Natural Dialectic[J]. Journal of Dialectics of Nature, 2008, 30(6): 99–101.
|
[13] |
赵克勤. 成对原理及其在集对分析(SPA)中的作用与意义[J]. 大自然探索, 1998, 17(4): 90.
ZHAO Keqin. Pairing principle and its role and significance in set pair analysis (SPA)[J]. Exploration of Nature, 1998, 17(4): 90.
|
[14] |
赵克勤. 集对分析的不确定性系统理论在AI中的应用[J]. 智能系统学报, 2006, 1(2): 16–25. doi: 10.3969/j.issn.1673-4785.2006.02.004.
ZHAO Keqin. The application of uncertainty systems theory of set pair analysis (SPU) in the artificial intelligence[J]. CAAI Transactions on Intelligent Systems, 2006, 1(2): 16–25. doi: 10.3969/j.issn.1673-4785.2006.02.004.
|
[15] |
赵克勤. SPA的同异反系统理论在人工智能研究中的应用[J]. 智能系统学报, 2007, 2(5): 20–35. doi: 10.3969/j.issn.1673-4785.2007.05.004.
ZHAO Keqin. The application of SPA-based identical-discrepancy-contrary system theory in artificial intelligence research[J]. CAAI Transactions on Intelligent Systems, 2007, 2(5): 20–35. doi: 10.3969/j.issn.1673-4785.2007.05.004.
|
[16] |
赵克勤. 基于集对分析的对立分类、度量及应用[J]. 科学技术与辩证法, 1994, 11(2): 26–30.
ZHAO Keqin. Classification, measurement and application of opposites based on set pair analysis[J]. Science, Technology and Dialectics, 1994, 11(2): 26–30.
|
[17] |
赵克勤. 联系数及其应用[J]. 吉林师范学院学报, 1996, 17(8): 50–53.
ZHAO Keqin. Contact numbers and their applications[J]. Journal of Jilin Teachers College, 1996, 17(8): 50–53.
|
[18] |
赵克勤. 联系数学的基本原理与应用[J]. 安阳工学院学报, 2009, (2): 107–110. doi: 10.3969/j.issn.1000-5781.1999.02.002.
ZHAO Keqin. Basic principles and applications of contact mathematics[J]. Journal of Anyang Institute of Technology, 2009, (2): 107–110. doi: 10.3969/j.issn.1000-5781.1999.02.002.
|
[19] |
黄德才, 赵克勤, 陆耀忠, 等. a+b i+c j型联系数的四则运算及其应用[J]. 机电工程, 2000, 17(3): 81–84. doi: 10.3969/j.issn.1001-4551.2000.03.030.
HUANG Decai, ZHAO Keqin, LU Yaozhong, et al. The fundamental operation of arithmetic on connection number a+b i+c j and its application[J]. Mechanical & Electrical Engineering Magazine, 2000, 17(3): 81–84. doi: 10.3969/j.issn.1001-4551.2000.03.030.
|
[20] |
黄德才, 赵克勤, 陆耀忠. 联系数 a+ bi的运算及在网络计划中的应用[J]. 浙江工业大学学报, 2000, 28(3): 190–194. doi: 10.3969/j.issn.1006-4303.2000.03.002.
HUANG Decai, ZHAO Keqin, and LU Yaozhong. Fundamental operation of arithmetic on connection number a+ bi and its application in network planning[J]. Journal of Zhejiang University of Technology, 2000, 28(3): 190–194. doi: 10.3969/j.issn.1006-4303.2000.03.002.
|
[21] |
赵克勤, 黄德才, 陆耀忠. 基于 a+ bi+ cj型联系数的网络计划方法初探[J]. 系统工程与电子技术, 2000, 22(2): 29–31. doi: 10.3321/j.issn:1001-506X.2000.02.009.
ZHAO Keqin, HUANG Decai, and LU Yaozhong. A new network planning method based on the connection number a+ bi+ cj[J]. Systems Engineering and Electronics, 2000, 22(2): 29–31. doi: 10.3321/j.issn:1001-506X.2000.02.009.
|
[22] |
黄德才, 张丽君, 赵克勤. 基于 a+ bi型联系数的不确定网格静态调度算法[J]. 计算机科学, 2007, 34(8): 126–129,179. doi: 10.3969/j.issn.1002-137X.2007.08.034.
HUANG Decai, ZHANG Lijun, and ZHAO Keqin. Static scheduling algorithms based on connective-number of type a+ bi for uncertain computing grid[J]. Computer Science, 2007, 34(8): 126–129,179. doi: 10.3969/j.issn.1002-137X.2007.08.034.
|
[23] |
刘秀梅, 赵克勤. 基于联系数复运算的区间数多属性决策方法及应用[J]. 数学的实践与认识, 2008, 38(23): 57–64.
LIU Xiumei and ZHAO Keqin. Multiple attribute decision making and its applications based on complex number arithmetic operation of connection number with interval numbers[J]. Mathematics in Practice and Theory, 2008, 38(23): 57–64.
|
[24] |
刘秀梅, 赵克勤. 基于SPA的D-U空间的区间数多属性决策模型及应用[J]. 模糊系统与数学, 2009, 23(2): 167–174.
LIU Xiumei and ZHAO Keqin. Multiple attribute decision making and its applications with interval numbers based on D-U space of SPA[J]. Fuzzy Systems and Mathematics, 2009, 23(2): 167–174.
|
[25] |
刘秀梅, 赵克勤. 区间数决策集对分析[M]. 北京: 科学出版社, 2014: 80–101.
LIU Xiumei and ZHAO Keqin. Interval Number Decision Set Pair Analysis[M]. Beijing: Science Press, 2014: 80–101.
|
[26] |
赵森烽, 赵克勤. 概率联系数化的原理及其在概率推理中的应用[J]. 智能系统学报, 2012, 7(3): 200–205. doi: 10.3969/j.issn.1673-4785.201112014.
ZHAO Senfeng and ZHAO Keqin. The principle of a connection number in probability and its application in probabilistic reasoning[J]. CAAI Transactions on Intelligent Systems, 2012, 7(3): 200–205. doi: 10.3969/j.issn.1673-4785.201112014.
|
[27] |
赵森烽, 赵克勤. 几何概型的联系概率(复概率)与概率的补数定理[J]. 智能系统学报, 2013, 8(1): 11–15. doi: 10.3969/j.issn.1673-4785.201208025.
ZHAO Senfeng and ZHAO Keqin. Contact probability (complex probability) of the geometry probability and the complement number theorem of probability[J]. CAAI Transactions on Intelligent Systems, 2013, 8(1): 11–15. doi: 10.3969/j.issn.1673-4785.201208025.
|
[28] |
赵森烽, 赵克勤. 联系概率的由来及其在风险决策中的应用[J]. 数学的实践与认识, 2013, 43(4): 165–171. doi: 10.3969/j.issn.1000-0984.2013.04.024.
ZHAO Senfeng and ZHAO Keqin. The contact probability in risk decision-making medium application[J]. Mathematics in Practice and Theory, 2013, 43(4): 165–171. doi: 10.3969/j.issn.1000-0984.2013.04.024.
|
[29] |
赵森烽, 赵克勤. 频率型联系概率与随机事件转化定理[J]. 智能系统学报, 2014, 9(1): 53–59. doi: 10.3969/j.issn.1673-4785.201305003.
ZHAO Senfeng and ZHAO Keqin. Frequency-type contact probability and random events transformation theorem[J]. CAAI Transactions on Intelligent Systems, 2014, 9(1): 53–59. doi: 10.3969/j.issn.1673-4785.201305003.
|
[30] |
赵克勤, 赵森烽. 贝叶斯概率向赵森烽-克勤概率的转换与应用[J]. 智能系统学报, 2015, 10(1): 51–61. doi: 10.3969/j.issn.1673-4785.201405022.
ZHAO Keqin and ZHAO Senfeng. Bayes probability transition to Zhao Senfeng-Keqin probability and its application[J]. CAAI Transactions on Intelligent Systems, 2015, 10(1): 51–61. doi: 10.3969/j.issn.1673-4785.201405022.
|
[31] |
赵克勤, 赵森烽. 赵森烽-克勤概率的赌本分配研究与期望值定理[J]. 智能系统学报, 2017, 12(5): 608–615. doi: 10.11992/tis.201604020.
ZHAO Keqin and ZHAO Senfeng. Interval multiple attribute decision making based on geometric properties of connection number[J]. CAAI Transactions on Intelligent Systems, 2017, 12(5): 608–615. doi: 10.11992/tis.201604020.
|
[32] |
阎理, 阎滨. 相似系统集对分析[J]. 指挥技术学院学报, 2000, 11(3): 9–13.
YAN Li and YAN Bin. The set pair analysis of similarity system[J]. Journal of Institute of Command and Technology, 2000, 11(3): 9–13.
|
[33] |
陆广地. 基于联系数几何特性的区间数多属性决策[J]. 数学的实践与认识, 2017, 47(18): 194–200.
LU Guangdi. Interval multiple attribute decision making based on geometric properties of connection number[J]. Mathematics in Practice and Theory, 2017, 47(18): 194–200.
|
[34] |
李斌, 华亮, 徐蓉, 等. 基于银屑病疗效联系数几何特性的临床用药优选探讨[J]. 辽宁中医杂志, 2018, 45(2): 237–241. doi: 10.13192/j.issn.1000-1719.2018.02.004.
LI Bin, HUA Liang, XU Rong, et al. Study on clinical drug selection scheme from geometrical characteristics based on connection number of clinical efficacy of psoriasis[J]. Liaoning Journal of Traditional Chinese Medicine, 2018, 45(2): 237–241. doi: 10.13192/j.issn.1000-1719.2018.02.004.
|
[35] |
赵克勤. 集对分析与熵的研究[J]. 浙江大学学报(社科版), 1992, 6(3): 65–72. doi: 10.13976/j.cnki.xk.2023.2392.
ZHAO Keqin. Studies on set pair analysis and entropy[J]. Journal of Zhejiang University Sciences (social sciences edition), 1992, 6(3): 65–72. doi: 10.13976/j.cnki.xk.2023.2392.
|
[36] |
魏邦友. 载人航天器综合测试数据评估方法的研究[J]. 电子质量, 2017(7): 28–30. doi: 10.3969/j.issn.1003-0107.2017.07.008.
WEI Bangyou. Research on evaluation method of comprehensive test data for manned spacecraft[J]. Electronics Quality, 2017(7): 28–30. doi: 10.3969/j.issn.1003-0107.2017.07.008.
|
[37] |
刘以安, 牛媛媛, 刘同明. 集对分析在多雷达数据融合中的应用研究[J]. 华东船舶工业学院学报:自然科学版, 2005, 19(2): 64–67. doi: 10.3969/j.issn.1673-4807.2005.02.015.
LIU Yian, NIU Yuanyuan, and LIU Tongming. Application of set pair Analysis in multi-radar data fusion[J]. Journal of East China Shipbuilding Institute:Natural Science Edition, 2005, 19(2): 64–67. doi: 10.3969/j.issn.1673-4807.2005.02.015.
|
[38] |
张秀辉, 刘以安, 曹宁生, 等. 基于集对分析的雷达信号分选算法[J]. 现代雷达, 2010, 32(2): 35–37. doi: 10.3969/j.issn.1004-7859.2010.02.008.
ZHANG Xiuhui, LIU Yian, CAO Ningsheng, et al. Radar signal sorting method based on set pair analysis[J]. Modern Radar, 2010, 32(2): 35–37. doi: 10.3969/j.issn.1004-7859.2010.02.008.
|
[39] |
黎蓉, 刘以安, 王刚. 基于改进集对分析聚类的雷达信号分选方法[J]. 现代电子技术, 2014, 37(9): 8–11. doi: 10.3969/j.issn.1004-373X.2014.09.003.
LI Rong, LIU Yian, and WANG Gang. Radar signal sorting method based on modified set pair analysis clustering[J]. Modern Electronics Technique, 2014, 37(9): 8–11. doi: 10.3969/j.issn.1004-373X.2014.09.003.
|
[40] |
张萌萌, 刘以安, 宋萍. 偏联系数聚类和随机森林算法在雷达信号分选中的应用[J]. 激光与光电子学进展, 2019, 56(6): 062804. doi: 10.3788/LOP56.062804.
ZHANG Mengmeng, LIU Yian, and SONG Ping. Applications of Partial connection clustering algorithm and random forest algorithm in radar signal sorting[J]. Laser & Optoelectronics Progress, 2019, 56(6): 062804. doi: 10.3788/LOP56.062804.
|
[41] |
杨承志, 肖卫华, 吴宏超, 等. 一种对多种重频调制类型雷达信号分选算法的研究[J]. 科学技术与工程, 2014, 14(34): 33–37. doi: 10.3969/j.issn.1671-1815.2014.34.007.
YANG Chengzhi, XIAO Weihua, WU Hongchao, et al. Research on an improved sorting method for multiple PRI type radar signals[J]. Science Technology and Engineering, 2014, 14(34): 33–37. doi: 10.3969/j.issn.1671-1815.2014.34.007.
|
[42] |
殷志远, 彭涛, 沈铁元. 雷达估算和雨量站插值降水精度的对比分析[J]. 水利科技与经济, 2010, 16(9): 996–999. doi: 10.3969/j.issn.1006-7175.2010.09.015.
YIN Zhiyuan, PENG Tao, and SHEN Tieyuan. The comparative study of radar estimation and grid interpolation of rainfall station[J]. Water Conservancy Science and Technology and Economy, 2010, 16(9): 996–999. doi: 10.3969/j.issn.1006-7175.2010.09.015.
|
[43] |
孟现海, 刘以安, 刘静. 基于联系度态势的图像边缘检测算法[J]. 计算机工程与设计, 2007, 28(10): 2364–2366,2370. doi: 10.3969/j.issn.1000-7024.2007.10.037.
MENG Xianhai, LIU Yian, and LIU Jing. Algorithms of image edge detection based on degree connection situation[J]. Computer Engineering and Design, 2007, 28(10): 2364–2366,2370. doi: 10.3969/j.issn.1000-7024.2007.10.037.
|
[44] |
赵克勤. 集对分析在系统智能预测中的应用综述[J]. 智能系统学报, 2022, 17(2): 233–247. doi: 10.11992/tis.202103023.
ZHAO Keqin. Application overview of set pair analysis in intelligent prediction system[J]. CAAI Transactions on Intelligent Systems, 2022, 17(2): 233–247. doi: 10.11992/tis.202103023.
|
[45] |
王国强. 不确定性理论——集对分析在MOS概率天气预报中的应用[J]. 浙江气象科技, 1999, 20(1): 1–6. doi: 10.16000/j.cnki.zjqx.1999.01.001.
WANG Guoqiang. Uncertainty theory — application of set pair analysis in MOS probabilistic weather forecast[J]. Zhejiang Meteorological Science and Technology, 1999, 20(1): 1–6. doi: 10.16000/j.cnki.zjqx.1999.01.001.
|
[46] |
薛根元, 王国强. 不确定性理论集对分析在预报模型建立中的应用研究[J]. 气象学报, 2003, 61(5): 592–599. doi: 10.3321/j.issn:0577-6619.2003.05.008.
XUE Genyuan and WANG Guoqiang. Application of set pair analysis to fuzzy predictors of multiple regression weather forcast models[J]. Acta Meteorologica Sinica, 2003, 61(5): 592–599. doi: 10.3321/j.issn:0577-6619.2003.05.008.
|
[47] |
王国强, 赵克勤, 郑选军. 天气预报多元回归模型中模糊因子的集对分析[J]. 科技通报, 2004, 20(2): 151–155. doi: 10.3969/j.issn.1001-7119.2004.02.014.
WANG Guoqiang, ZHAO Keqin, and ZHENG Xuanjun. Application of set pair analysis to fuzzy predictors of multiple regression weather forcast models[J]. Bulletin of Science and Technology, 2004, 20(2): 151–155. doi: 10.3969/j.issn.1001-7119.2004.02.014.
|
[48] |
刘晓, 唐辉明, 刘瑜. 基于集对分析的滑坡变形动态建模研究[J]. 岩土力学, 2009, 30(8): 2371–2378. doi: 10.3969/j.issn.1000-7598.2009.08.031.
LIU Xiao, TANG Huiming, and LIU Yu. Landslide deformation dynamic modeling research based on set pair analysis[J]. Rock and Soil Mechanics, 2009, 30(8): 2371–2378. doi: 10.3969/j.issn.1000-7598.2009.08.031.
|
[49] |
许增光, 线美婷, 熊伟, 等. 基于集对分析模型的岩溶区浅埋穿河隧道突涌水危险性评价[J]. 应用力学学报, 2023, 40(1): 135–145. doi: 10.11776/j.issn.1000-4939.2023.01.017.
XU Zengguang, XIAN Meiting, XIONG Wei, et al. Risk assessment of water inrush in karst shallow tunnel under river based on SPA model[J]. Chinese Journal of Applied Mechanics, 2023, 40(1): 135–145. doi: 10.11776/j.issn.1000-4939.2023.01.017.
|
[50] |
赵克勤. 基于集对分析的不确定性多属性决策模型与算法[J]. 智能系统学报, 2010, 5(1): 41–50.
ZHAO Keqin. Uncertain attribute decision making model and algorithm based on the Set pair analysis[J]. Journal of Intelligent Systems, 2010, 5(1) : 41–50.
|
[51] |
刘秀梅, 赵克勤. 集对分析在不确定性智能决策中的应用[J]. 智能系统学报, 2020, 15(1): 121–135. doi: 10.11992/tis.201910025.
LIU Xiumei and ZHAO Keqin. Application of set pair analysis in the uncertainty intelligent decision making[J]. CAAI Transactions on Intelligent Systems, 2020, 15(1): 121–135. doi: 10.11992/tis.201910025.
|
[52] |
刘秀梅, 赵克勤. 区间数决策集对分析[M]. 北京: 科学出版社, 2014.
LIU Xiumei and ZHAO Keqin. Interval Number Decision Set Pair Analysis[M]. Beijing: Science Press, 2014.
|
[53] |
汪新凡, 隆丽兰, 周欢. 多型异构数据下准则具有优先级别的双边匹配决策方法[J]. 信息与控制, 2023, 52(3): 405–416. doi: 10.13976/j.cnki.xk.2023.2392
WANG Xinfan, LONG Lilan, and ZHOU Huan. Two-sided matching decision making approach under multi-type heterogeneous data considering different priority levels of criteria[J]. Information and Control, 2023, 52(3): 405–416. doi: 10.13976/j.cnki.xk.2023.2392.
|
[54] |
钟义信. 高等人工智能原理—观念、方法、模型、理论[M]. 北京: 科学出版社, 2014.
ZHONG Yixin. Principles of Advanced Artificial Intelligence — Concepts, Methods, Models, theories[M]. Beijing: Science Press, 2014.
|
[55] |
黄德才, 赵克勤. 用联系数描述和处理网络计划中的不确定性[J]. 系统工程学报, 1999, 14(2): 112–117. doi: 10.3969/j.issn.1000-5781.1999.02.002.
HUANG Decai and ZHAO Keqin. Using the connection number of the spa to express and process the uncertainties in network planning[J]. Journal of Systems Engineering, 1999, 14(2): 112–117. doi: 10.3969/j.issn.1000-5781.1999.02.002.
|
[56] |
赵克勤, 黄德才, 陆耀忠. 基于a+bi+cj型联系数的网络计划方法初探[J]. 系统工程与电子技术, 2000, 22(2): 29–31. doi: 10.3321/j.issn:1001-506X.2000.02.009
ZHAO Keqin, HUANG Decai, and LU Yaozhong. A new network planning method based on the connection number a+bi+cj[J]. Systems Engineering and Electronics, 2000, 22(2): 29–31. doi: 10.3321/j.issn:1001-506X.2000.02.009.
|
[57] |
赵克勤, 黄德才, 朱艺华, 等. 含有突发性的网络关键路线问题[J]. 管理工程学报, 2000, 14(2): 33–34. doi: 10.3969/j.issn.1004-6062.2000.02.010.
ZHAO Keqin, HUANG Decai, ZHU Yihua, et al. Analysis on critical path of a network planning in which accidents be in volved[J]. Journal of Industrial Engineering/ Engineering Management, 2000, 14(2): 33–34. doi: 10.3969/j.issn.1004-6062.2000.02.010.
|
[58] |
黄德才, 龚卫华, 张丽君, 等. 基于联系数的网格任务动态调度算法[J]. 计算机工程, 2009, 35(8): 112–115. doi: 10.7666/d.d093185.
HUANG Decai, GONG Weihua, ZHANG Lijun, et al. Dynamic grid task Scheduling Algorithm based on connection number[J]. Computer Engineering, 2009, 35(8): 112–115. (in Chinese). doi: 10.7666/d.d093185.
|
[59] |
赵克勤, 黄德才, 陆耀忠. 同异反网络计划的不确定性分类与分析[J]. 系统工程与电子技术, 2000, 22(11): 72–74. doi: 10.3321/j.issn:1001-506X.2000.11.023.
ZHAO Keqin, HUANG Decai, and LU Yaozhong. Forecasting and controlling method of the time limit for a project of identical-discrepancy-contrary network planning[J]. Systems Engineering and Electronics, 2000, 22(11): 72–74. doi: 10.3321/j.issn:1001-506X.2000.11.023.
|
[60] |
黄德才, 赵克勤, 陆耀忠. 同异反网络计划的工期预测方法[J]. 系统工程与电子技术, 2001, 23(5): 24–27. doi: 10.7666/d.D617408.
HUANG Decai, ZHAO Keqin, LU Yaozhong. A method for predicting the construction period of the same-different and counter-network planning[J]. Systems Engineering and electronics, 2001, 23(5): 24–27. doi: 10.7666/d.D617408.
|
[61] |
郭瑞林. 作物育种同异理论与方法[M]. 北京, 中国农业科学技术出版社, 2011.
GUO Ruilin. Theory and method of similarity and difference in crop breeding[M] . Beijing, China Agricultural Science and Technology Press, 2011.
|
[62] |
郭瑞林, 王占中. 作物同异育种智能决策系统及其应用[M]. 北京, 科学出版社, 2014: 1–343.
GUO ruilin, WANG Zhanzhong. Intelligent decision system and its application in crop breeding[M]. Beijing, Science Press, January, 2014: 1–343.
|
[63] |
郑建青. 观察数据用联系数表示的最小二乘法及应用[J]. 宁波大学学报(理工版), 2013, 26(1): 57–59.
ZHENG Jianqing. The least squares and application of observed data in terms of connection numbers[J]. Journal of Ningbo University Science and Technology, 2013, 26(1): 57–59.
|
[64] |
张玲, 张亚飞, 张立舒. 联系数四则运算的证明与联系数群[J]. 数学学习与研究, 2018(7): 18–20.
ZHANG Ling, ZHANG Yafei, ZHANG Lishu. Proof of four operations of connection number and connection number group[J]. Mathematics Learning and research, 2018(7): 18–20.
|
[65] |
赵森烽, 赵克勤. 联系概率的由来及其在风险决策中的应用[J]. 数学的实践与认识, 2013, 43(4): 165–171. doi: 10.3969/j.issn.1000-0984.2013.04.024.
ZHAO Senfeng and ZHAO Keqin. The contact probability in risk decision-making medium application[J]. Mathematics in Practice and Theory, 2013, 43(4): 165–171. doi: 10.3969/j.issn.1000-0984.2013.04.024.
|
[66] |
黎振宇, 陈晓国, 宋永超, 等. 二元联系数-投影灰靶决策理论在电网应急能力评估中的应用[J]. 浙江大学学报(工学版), 2021, 55(5): 927–934+975. doi: 10.3785/j.issn.1008-973X.2021.05.013.
LI Zhenyu, CHEN Xiaoguo, SONG Yongchao et al. Application of binary connection-projected gray target decision theory in power grid emergency capability evaluation[J]. Journal of Zhejiang University (Engineering and Technology), 2021, 55(5): 927–934+975. doi: 10.3785/j.issn.1008-973X.2021.05.013.
|
[67] |
柯丽华, 唐华倩, 王其虎, 等. 基于二元联系数可能度函数的区间数排序方法及应用[J]. 系统科学与数学, 2023, 43(2): 417–430.
KE Lihua, TANG Huaqian, WANG Qihu, et al. Ranking method of interval numbers based on possibility function of binary connection number and its application[J]. Systems science and mathematics, 2023, 43(2): 417–430.
|
[68] |
徐宗本. 人工智能的10个重大数理基础问题[J]. 中国科学:信息科学, 2021, 51(12): 1967–1978. doi: 10.1360/SSI-2021-0254.
XU Zongben. Ten fundamental problems for artificial intelligence: Mathematical and physical aspects[J]. Scientia Sinica Informationis, 2021, 51(12): 1967–1978. doi: 10.1360/SSI-2021-0254.
|
[69] |
张春英, 郭景峰. 集对社会网络 α关系社区及动态挖掘算法[J]. 计算机学报, 2013, 36(8): 1682–1692. doi: 10.3724/SP.J.1016.2013.01682.
ZHANG Chunying and GUO Jingfeng. The α relationship communities of set pair social networks and its dynamic mining algorithms[J]. Chinese Journal of Computers, 2013, 36(8): 1682–1692. doi: 10.3724/SP.J.1016.2013.01682.
|
[70] |
张春英, 高瑞艳, 王佳昊, 等. 面向不完备分类型矩阵数据的集对k-modes聚类算法[J]. 小型微型计算机系统, 2021, 42(9): 1837–1844. doi: 10.3969/j.issn.1000-1220.2021.09.007.
ZHANG Chunying, GAO Ruiyan, WANG Jiahao, et al. Set Pair k-modes Clustering algorithm for incomplete categorical matrix data[J]. Journal of Chinese Computer Systems, 2021, 42(9): 1837–1844. doi: 10.3969/j.issn.1000-1220.2021.09.007.
|
[71] |
WANG Jing, WANG Jing, GUO Jingfeng, et al. Research progress of complex network modeling methods based on uncertainty theory[J]. Mathematics, 2023, 11(5): 1212. doi: 10.3390/math11051212.
|
[72] |
ZHANG Chunying, REN Jing, LIU Lu, et al. Set pair three-way overlapping community discovery algorithm for weighted social internet of things[J]. Digital Communications and Networks, 2023, 9(1): 3–13. doi: 10.1016/j.dcan.2022.04.004.
|
[73] |
胡波, 王汝传, 王海艳. 基于集对分析的P2P网络安全中的信誉度改进算法[J]. 电子学报, 2007, 35(2): 244–247. doi: 10.3321/j.issn:0372-2112.2007.02.012.
HU Bo, WANG Ruchuan, and WANG Haiyan. A modified security solution based on SPA for Servents' reputations in P2P Systems[J]. Acta Electronica Sinica, 2007, 35(2): 244–247. doi: 10.3321/j.issn:0372-2112.2007.02.012.
|
[74] |
HE Chaokai and WU Meng. A new reputation model for P2P network based on set pair analysis[j]. The Open Cybernetics & Systemics Journal, 2015, 9(1): 1393–1398. doi: 10.2174/1874110X01509011393.
|
[75] |
PENG Xindong, GARG H, and LUO Zhigang. When content-centric networking meets multi-criteria group decision-making: Optimal cache placement policy achieved by MARCOS with q-rung orthopair fuzzy set pair analysis[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106231. doi: 10.1016/j.engappai.2023.106231.
|
[76] |
陈晓. 网络中顶点间相似性度量方法研究[D]. [硕士论文] 燕山大学, 2018.
CHEN Xiao. Research on similarity measurement between vertices in networks[D]. [Master dissereation]. Yanshan University, 2018.
|
[77] |
孙勇, 李宝聚, 孙志博, 等. 融合RBF神经网络和集对分析的风电功率超短期预测[J]. 昆明理工大学学报:自然科学版, 2020, 45(5): 49–58. doi: 10.16112/j.cnki.53-1223/n.2020.05.008.
SUN Yong, LI Baoju, SUN Zhibo, et al. Ultra-short-term wind power forecasting integrated RBF neural network and set pair analysis[J]. Journal of Kunming University of Science and Technology:Natural Science, 2020, 45(5): 49–58. doi: 10.16112/j.cnki.53-1223/n.2020.05.008.
|
[78] |
耿鹏, 郑中团. 基于集对分析-RBF神经网络的生态文明建设评价指标体系构建[J]. 智能计算机与应用, 2020, 10(12): 86–90. doi: 10.3969/j.issn.2095-2163.2020.12.020.
GENG Peng and ZHENG Zhongtuan. Construction of ecological civilization construction evaluation index system based on set pair analysis-RBF neural network[J]. Intelligent Computer and Applications, 2020, 10(12): 86–90. doi: 10.3969/j.issn.2095-2163.2020.12.020.
|
[79] |
赵鹏丽, 顾伟红. 基于BP神经网络与SPA的地铁TBM施工安全风险评估[J]. 建筑安全, 2019, 34(11): 43–49. doi: 10.3969/j.issn.1004-552X.2019.11.013.
ZHAO Pengli and GU Weihong. Safety risk assessment of subway TBM construction based on BP neural network and SPA[J]. Construction Safety, 2019, 34(11): 43–49. doi: 10.3969/j.issn.1004-552X.2019.11.013.
|
[80] |
陈笑, 胡宏祥, 戚王月, 等. 基于集对分析和GA-BP神经网络的地下水埋深预测研究[J]. 华北水利水电大学学报:自然科学版, 2019, 40(4): 57–64. doi: 10.19760/j.ncwu.zk.2019052.
CHEN Xiao, HU Hongxiang, QI Wangyue, et al. Groundwater depth prediction based on set pair analysis and GA-BP neural network[J]. Journal of North China University of Water Resources and Electric Power:Natural Science Edition, 2019, 40(4): 57–64. doi: 10.19760/j.ncwu.zk.2019052.
|
[81] |
陈晶, 王文圣, 李跃清. 集对分析径向基函数神经网络预测模型[J]. 水文, 2011, 31(2): 11–14. doi: 10.3969/j.issn.1000-0852.2011.02.003.
CHEN Jing, WANG Wensheng, and LI Yueqing. Prediction model of radial basis function neural network based on set pair analysis[J]. Journal of China Hydrology, 2011, 31(2): 11–14. doi: 10.3969/j.issn.1000-0852.2011.02.003.
|
[82] |
ZHANG Rui, WANG Yan, WANG Kaibo, et al. An evaluating model for smart growth plan based on BP neural network and set pair analysis[J]. Journal of Cleaner Production, 2019, 226: 928–939. doi: 10.1016/j.jclepro.2019.03.053.
|
[83] |
赵志峰, 文虎, 高炜欣, 等. 同异反模式的管道土壤腐蚀综合评价[J]. 西安科技大学学报, 2017, 37(3): 352–357. doi: 10.13800/j.cnki.xakjdxxb.2017.0308.
ZHAO Zhifeng, WEN Hu, GAO Weixin, et al. Integrated evaluation of the soil corrosion in pipeline in contrary identical discrepancy model[J]. Journal of Xi'an University of Science and Technology, 2017, 37(3): 352–357. doi: 10.13800/j.cnki.xakjdxxb.2017.0308.
|
[84] |
李德顺, 许开立, 崔岳峰. 同异反最优模式识别模型及其在危险性评价中应用[C]. 2010(沈阳)国际安全科学与技术学术研讨会论文集, 沈阳, 2010.
LI Deshun, XU Kaili, and CUI Yuefeng. Heterogeneous inverse optimal pattern recognition model and its application in risk assessment[C]. Proceedings of 2010 (Shenyang) International Colloquium on Safety Science and Technology, Shenyang, China, 2010.
|
[85] |
白扬文. 平面图象的同异反模式识别技术[C]//1996年中国智能自动化学术会议论文集(下册), 呼和浩特, 1996.
BAI Yangwen. Anti-pattern recognition of identical and different planar images[C]. Proceedings of the Academic Conference of Intelligent Automation Committee of Chinese Society of Automation, Hohhot, China, 1996.
|
[86] |
杨静, 李文平, 张健沛. 一种基于SPA的多数据流同异反分析法[J]. 武汉大学学报:信息科学版, 2011, 36(1): 92–97. doi: 10.13203/j.whugis2011.01.025.
YANG Jing, LI Wenping, and ZHANG Jianpei. A data mining approach based on identical-different-contrary analysis[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 92–97. doi: 10.13203/j.whugis2011.01.025.
|
[87] |
魏冬慧, 吕英, 蒯仂, 等. 基于同异反分析的寻常型银屑病用药优选[J]. 中华中医药学刊, 2018, 36(10): 2445–2447. doi: 10.13193/j.issn.1673-7717.2018.10.036.
WEI Donghui, LYU Ying, KUAI Le, et al. Optimization of psoriasis drugs based on same and similar back analysis[J]. Chinese Archives of Traditional Chinese Medicine, 2018, 36(10): 2445–2447. doi: 10.13193/j.issn.1673-7717.2018.10.036.
|
[88] |
徐忆琳. 用SPA同异反系统理论研究知识创新规律[J]. 科学学研究, 2002, 20(3): 327–329. doi: 10.3969/j.issn.1003-2053.2002.03.022.
XU Yilin. Research on the law of knowledge innovation using IDC-SPA theory[J]. Studies in Science of Science, 2002, 20(3): 327–329. doi: 10.3969/j.issn.1003-2053.2002.03.022.
|
[89] |
余国祥. 默会知识和显性知识的同异反集对分析[J]. 襄樊学院学报, 2008, 29(5): 84–88. doi: 10.3969/j.issn.1009-2854.2008.05.021.
YU Guoxiang. A SPA of tacit knowledge and explicit knowledge in identity, discrepancy and contrary[J]. Journal of Xiangfan University, 2008, 29(5): 84–88. doi: 10.3969/j.issn.1009-2854.2008.05.021.
|
[90] |
黄大荣, 黄丽芬. 基于集对分析联系数故障树的BA系统可靠性分析[J]. 计算机应用研究, 2010, 27(1): 111–113. doi: 10.3969/j.issn.1001-3695.2010.01.033.
HUANG Darong and HUANG Lifen. Reliability analysis of BA system based on connection number of set pair analysis and FTA[J]. Application Research of Computers, 2010, 27(1): 111–113. doi: 10.3969/j.issn.1001-3695.2010.01.033.
|
[91] |
刘英, 陈宇, 陈志恒. 基于集对分析理论的金刚滚轮转动系统故障树分析[J]. 机械科学与技术, 2014, 33(9): 1335–1339. doi: 10.13433/j.cnki.1003-8728.2014.0911.
LIU Ying, CHEN Yu, and CHEN Zhiheng. Fault tree analysis of diamond roller rotation system based on set pair analysis theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1335–1339. doi: 10.13433/j.cnki.1003-8728.2014.0911.
|
[92] |
XIE Hongtao, LI Bo, and ZHAO Yunsheng. Study on risk trend assessment of metro tunnel crossing underground pipeline based on partial connection number[J]. Applied Mechanics and Materials, 2014, 580–583: 1283–1287. doi: 10.4028/www.scientific.net/amm.580-583.1283.
|
[93] |
XIE Xuecai and GUO Deyong. Human factors risk assessment and management: Process safety in engineering[J]. Process Safety and Environmental Protection, 2018, 113: 467–482. doi: 10.1016/j.psep.2017.11.018.
|
[94] |
崔铁军, 李莎莎. 多因素集对分析的系统故障模式识别方法[J]. 智能系统学报, 2022, 17(2): 387–392. doi: 10.11992/tis.202011006.
CUI Tiejun and LI Sasha. System fault-pattern recognition based on set pair analysis with multiple factors[J]. CAAI Transactions on Intelligent Systems, 2022, 17(2): 387–392. doi: 10.11992/tis.202011006.
|
[95] |
崔铁军, 李莎莎. 系统多功能状态表达式构建及其置信度研究[J]. 智能系统学报, 2023, 18(1): 124–130. doi: 10.11992/tis.202111022.
CUI Tiejun and LI Sasha. Construction of a system multi-function state expression and its confidence[J]. CAAI Transactions on Intelligent Systems, 2023, 18(1): 124–130. doi: 10.11992/tis.202111022.
|
[96] |
GHOLAMIZADEH K, ZAREI E, YAZDI M, et al. A hybrid model for dynamic analysis of domino effects in chemical process industries[J]. Reliability Engineering & System Safety, 2024, 241: 109654. doi: 10.1016/j.ress.2023.109654.
|
[97] |
孟庆刚, 王连心, 赵世初, 等. 浅谈集对分析在证候规范化研究中的应用[J]. 北京中医药大学学报, 2005(4): 9–13. doi: 10.3321/j.issn:1006-2157.2005.04.002.
MENG Qinggang, WANG Lianxin, ZHAO shichu et al. Primary the application of set pair analysis in the study of syndrome standardization [J]. Journal of Beijing University of Chinese Medicine, 2005(4): 9–13. doi: 10.3321/j.issn:1006-2157.2005.04.002.
|
[98] |
李斌, 徐蓉,李伦, 等. 基于联系数的痛风性关节炎血瘀证辨证因子研究[J]. 西医结合学报, 2009,7(8): 724–728. doi: 10.3736/jcim20090804.
LI Bin, XU Rong, LI Fulun, et al. Study on the factors of blood stasis syndrome differentiation of gouty arthritis based on connection number[J]. Journal of Integrated Chinese and Western medicine, 2009,7(8): 724–728. doi: 10.3736/jcim20090804.
|
[99] |
李斌, 李福伦, 赵克勤. 慢性皮肤溃疡中医辨证论治规律数学建模探析[J]. 中国中西医结合皮肤性病学杂志, 2010, 9(1): 4–7.
LI Bin, LI Fulun, ZHAO Keqin. Mathematical Modeling of TCM syndrome differentiation and treatment of chronic skin ulcer[J]. Chinese Journal of integrated traditional and Western medicine of dermatology and Venereology, 2010, 9(1): 4–7.
|
[100] |
李欣, 徐蓉, 周敏, 等. 基于集对分析的寻常型银屑病方证相关性研究[J]. 辽宁中医杂志, 2012, 39(6) : 974–978. doi: CNKI:SUN:LNZY.0.2012-06-008.
LI Xin, XU Rong, ZHOU Min, et al. Study on the correlation between prescriptions and syndromes of psoriasis vulgaris based on set pair analysis[J]. Liaoning Journal of Traditional Chinese medicine, 2012, 39(6) : 974–978. doi: CNKI:SUN:LNZY.0.2012-06-008.
|
[101] |
蒯仂, 赵克勤, 李斌. 基于集对分析偏联系数的寻常型银屑病对症用药优选探讨[J]. 上海医药, 2018, 39(23): 9–14+67. doi: CNKI:SUN:SYIY.0.2018-23-004.
KUAI Le, ZHAO Keqin, Li Bin. Discussion on optimal drug use for psoriasis vulgaris based on set pair analysis of partial correlation number[J]. Shanghai Medicine, 2018, 39(23): 9–14+67. (in Chinese) doi: CNKI:SUN:SYIY.0.2018-23-004.
|
[102] |
许逊哲, 茹意, 蒯仂, 等. 四元联系数在土槐菝葜汤治疗血热型银屑病疗效研究中的应用[J]. 中国中西医结合皮肤性病学杂志, 2018, 17(6): 489–492.
XU Xun ZHE, RU Yi, KUAI Le, et al. Application of four-element correlation number in the treatment of psoriasis of hematrexia[J]. Chinese Journal of Dermatology and Venereology of Integrated Traditional and Western Medicine, 2018, 17(6): 489–492.
|
[103] |
茹意, 蒯仂, 许逊哲, 等. 基于集对分析的疗效曲线在银屑病血热证典型方剂选优中的应用[J]. 中华中医药学刊, 2019, 37(2): 322–325. doi: CNKI:SUN:ZYHS.0.2019-02-014.
RU Yi, KUAI Le, XU Xunzhe et al. Application of curative effect curve based on set pair analysis in the selection of typical prescriptions for blood-heat syndrome of psoriasis[J]. Chinese Journal of Traditional Chinese Medicine, 2019, 37(2): 322–325. doi: CNKI:SUN:ZYHS.0.2019-02-014.
|
[104] |
迮侃, 陈曦, 赵淮波, 等. 基于集对分析成果的寻常型银屑病血热证诊疗方案的临床研究[J]. 中医杂志, 2019, 60(10): 849–852.
ZE Kan, CHEN Xi, ZHAO Huaibo, et al. Clinical study on diagnosis and treatment of blood-heat syndrome of psoriasis vulgaris based on set pair analysis results[J]. Chinese Journal of Traditional Chinese Medicine, 2019, 60(10): 849–852.
|
[105] |
罗月, 蒯仂, 茹意, 等. 皮肤病脏腑辨证的联系数学模型在临床中的应用初探[J]. 时珍国医国药, 2019, 30(5): 1247–1248. doi: CNKI:SUN:SZGY.0.2019-05-079.
LUO Yue, KUAI Le, RU Yi, et al. Clinical application of the relational mathematical model for differentiation of viscera syndrome in skin diseases[J]. Chinese Medicine, 2019, 30(5): 1247–1248. doi: CNKI:SUN:SZGY.0.2019-05-079.
|
[106] |
华亮, 蒯仂, 陈洁, 等. 联系数在银屑病治疗中医单方研究中的应用[J]. 上海医药, 2019, 41(3): 17–19+28.
HUA Liang, KUAI Le, CHEN Jie, et al. Application of correlation number in the treatment of psoriasis[J]. Shanghai Journal of Medicine, 2019, 41(3): 17–19+28.
|
[107] |
马天, 范斌, 王一飞, 等. 凉血潜阳法治疗寻常型银屑病血热证的临床观察[J]. 世界临床药物, 2020, 41(7): 524–529+561. doi: 10.13683/j.wph.2020.07.006.
MA Tian, FAN Bin, WANG Yifei et al. Clinical observation of cooling blood and suppressing Yang in the treatment of blood-heat syndrome of psoriasis vulgaris[J]. World Clinical Drugs, 2020, 41(7): 524–529+561. doi: 10.13683/j.wph.2020.07.006.
|
[108] |
华亮, 蒯仂, 李苏, 等. 基于六元联系数方程的六经辨治皮肤病模型[J]. 辽宁中医杂志, 2020, 47(12): 12–15.
HUA Liang, KUAI Le, LI Su, et al. Model of skin disease differentiation and treatment by six channels based on six-element correlation equation[J]. Liaoning Journal of Traditional Chinese Medicine, 2020, 47(12): 12–15.
|
[109] |
卢怡, 蒯仂, 茹意, 等. 集对分析阴阳平衡方程在皮肤病诊治中的应用[J]. 世界中医药, 2020, 15(14): 2170–2174. doi: 10.3969/j.issn.1673-7202.2020.14.032.
LU Yi, KUAI Le, RU Yi, et al. Application of yin-yang balance equation in diagnosis and treatment of dermatosis[J]. World Journal of Chinese Medicine, 2020, 15(14): 2170–2174. doi: 10.3969/j.issn.1673-7202.2020.14.032.
|
[110] |
邢梦, 蒯仂, 丁晓杰, 等. 基于集对分析偏联系数探讨银屑病的复发因素及预后趋势[J]. 辽宁中医杂志, 2021, 48(5): 19–22. doi: 10.13192/j.issn.1000-1719.2021.05.004.
XING Meng, KUAI Le, DING Xiaojie, et al. Study on recurrence factors and prognosis trend of psoriasis based on set pair analysis partial correlation number[J]. Liaoning Journal of Traditional Chinese Medicine, 2021, 48(5): 19–22. (in Chinese) doi: 10.13192/j.issn.1000-1719.2021.05.004.
|
[111] |
华亮, 魏冬慧, 蒯仂, 等. 基于集对分析势值与疗效曲线的银屑病血热证中药选优[J]. 中国中西医结合皮肤性病学杂志,2022, 21(5): 412–416.
HUA Liang, WEI Donghui, KUAI Le, et al. Selection of traditional Chinese medicine for blood-heat syndrome of psoriasis based on set pair analysis potential value and curative effect curve[J]. Chinese Journal of Dermatology and Venereology of Integrated Traditional and Western Medicine, 2022, 21(5): 412–416.
|
[112] |
KUAI Le, FEI Xiaoya, XING Jiaqi, et al. An efficacy predictive method for diabetic ulcers based on higher-order markov chain-set pair analysis[J]. Hindawi, Evidence-Based Complementary and Alternative Medicine Volume 2020, Article ID 5091671, 19 pages.
|
[113] |
李斌, 李欣, 蒯仂, 等. 中医辨证论治集对分析[M]. 科学出版社, 2021年.
LI Bin, LI Xin, KUAI Le, et al. Set pair analysis of tcm syndrome differentiation and treatment [M]. Science Press, 2021.
|
[114] |
PAN Fuquan, WU Qiudie, WANG Zhaoqiang, et al. Effectiveness evaluation of optical illusion deceleration markings for a V-shaped undersea tunnel based on the set pair analysis method and the technique for order preference by similarity to ideal solution theory[J]. Transportation Research Record:Journal of the Transportation Research Board, 2023, 2677(5): 308–324. doi: 10.1177/03611981221130326.
|
[115] |
WANG Wensheng, JIN Juliang, DING Jing, et al. A new approach to water resources system assessment——set pair analysis method[J]. Science in China Series E:Technological Sciences, 2009, 52(10): 3017–3023. doi: 10.1007/s11431-009-0099-z.
|
[116] |
王文圣, 金菊良, 丁晶, 等. 水文水资源集对分析[M]. 北京: 科学出版社, 2010.
WANG Wensheng, JIN Juliang, DING Jing, et al. Set Pair Analysis for Hydrology and Water Resources Systems[M]. Beijing: Science Press, 2010.
|
[117] |
潘争伟, 吴成国, 金菊良. 水资源系统评价与预测的集对分析方法[M]. 北京: 科学出版社, 2016.
PAN Zhengwei, WU Chengguo, and JIN Juliang. Set Pair Analysis Method for Water Resources System Evaluation and Prediction[M]. Beijing: Science Press, 2016.
|
[118] |
WANG Dong, BORTHWICK A G, HE Handan, et al. A hybrid wavelet de-noising and Rank-Set Pair Analysis approach for forecasting hydro-meteorological time series[J]. Environmental Research, 2018, 160: 269–281. doi: 10.1016/j.envres.2017.09.033.
|
[119] |
XU Feng, ZHENG Xiaoping, ZHANG Jian, et al. A hybrid reasoning mechanism integrated evidence theory and set pair analysis in Swine-Vet[J]. Expert Systems with Applications, 2010, 37(10): 7086–7093. doi: 10.1016/j.eswa.2010.03.008.
|
[120] |
GARG H and KUMAR K. An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making[J]. Soft Computing, 2018, 22(15): 4959–4970. doi: 10.1007/s00500-018-3202-1.
|
[121] |
龚士良. 集对分析及其在城市地面沉降研究中的应用[J]. 上海地质, 1997(4): 43–47.
GONG Shiliang. Set pair analysis and its application in study of urban land subsidence[J]. Shanghai Geology, 1997(4): 43–47.
|
[122] |
郑逸加. 基于高斯混合模型的模仿学习算法的优化与评价[D]. [硕士论文], 北京工业大学, 2017.
ZHENG Yijia. Optimization and evaluation of imitation learning algorithm based on Gauss mixture model[D]. [Master dissertation], Beijing University of Technology, 2017.
|
[123] |
XIANG Weiqi, YANG Xiaohua, and LI Yuqi. A set pair analysis model for suitability evaluation of human settlement environment[J]. Thermal Science, 2021, 25(3): 2109–2116. doi: 10.2298/TSCI191001095X.
|
[124] |
LI Lianhui, LEI Bingbing, and MAO Chunlei. Digital twin in smart manufacturing[J]. Journal of Industrial Information Integration, 2022, 26: 100289. doi: 10.1016/j.jii.2021.100289.
|
[125] |
ZHANG Peng, ZHANG Xuemei, YUAN Peng, et al. Performance optimization of geopolymer mortar blending in nano-SiO2 and PVA fiber based on set pair analysis[J]. e-Polymers, 2023, 23(1): 20230015. doi: 10.1515/epoly-2023-0015.
|
[126] |
XIANG Weiqi, YANG Xiaohua, BABUNA P, et al. Development, application and challenges of set pair analysis in environmental science from 1989 to 2020: A bibliometric review[J]. Sustainability, 2021, 14(1): 153. doi: 10.3390/su14010153.
|
[127] |
汪明武, 金菊良, 周玉良. 集对分析耦合方法与应用[M]. 北京: 科学出版社, 2014: 1–188.
WANG Mingwu, JIN Juliang, and ZHOU Yuliang. Set Pair Analysis Based Coupling Methods and Applications[M]. Beijing: Science Press, 2014: 1–188.
|
[128] |
赵克勤. 偏联系数[C]. 中国人工智能进展2005, 北京, 2005: 884–886.
ZHAO Keqin. Partial linkage number[C]. Progress in Artificial Intelligence in China, Beijing, China, 2005: 884–886.
|
[129] |
杨红梅, 赵克勤. 偏联系数的计算与应用研究[J]. 智能系统学报, 2019, 14(5): 865–876. doi: 10.11992/tis.201810022.
YANG Hongmei and ZHAO Keqin. The calculation and application of partial connection numbers[J]. CAAI Transactions on Intelligent Systems, 2019, 14(5): 865–876. doi: 10.11992/tis.201810022.
|
[130] |
杨红梅. 偏联系数的哲学原理与应用[M]. 北京: 国家开放大学出版社, 2020.
YANG Hongmei. The Philosophical Principle and Application of partial connectives[M]. Beijing: National Open University Press, 2020.
|
[131] |
杨红梅. 基于偏联系数的系统在临界点附近的变化趋势研究[J]. 山西广播电视大学学报, 2019, 24(1): 77–81. doi: CNKI:SUN:SXGB.0.2019-01-018.
YANG Hongmei. Study on the change trend of the system near the critical point based on the partial connection number[J]. Journal of Shanxi Radio and Television University, 2019, 24(1): 77–81. doi: CNKI:SUN:SXGB.0.2019-01-018.
|
[132] |
LI Zheng, JIN Juliang, CUI Yi, et al. Dynamic evaluation of regional water resources carrying capacity based on set pair analysis and partial connection number[J]. Water Supply, 2022, 22(3): 2407–2423. doi: 10.2166/ws.2021.371.
|
[133] |
SHEN Qing, ZHANG Xiongtao, LOU Jungang, et al. Interval-valued intuitionistic fuzzy multi-attribute second-order decision making based on partial connection numbers of set pair analysis[J]. Soft Computing, 2022, 26(19): 10389–10400. doi: 10.1007/s00500-022-07314-2.
|
[134] |
申情, 蒋云良, 张雄涛. 属性权重未知情况下犹豫模糊多属性决策方法[J]. 智能系统学报, 2022, 17(4): 728–736. doi: 10.11992/tis.202107038.
SHEN Qing, JIANG Yunliang, and ZHANG Xiongtao. A hesitant fuzzy multi-attribute decision-making method with unknown attribute weights[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 728–736. doi: 10.11992/tis.202107038.
|
[135] |
SHEN Qing, HUANG Xu, LIU Yong, et al. Multiattribute decision making based on the binary connection number in set pair analysis under an interval-valued intuitionistic fuzzy set environment[J]. Soft Computing, 2020, 24(10): 7801–7809. doi: 10.1007/s00500-019-04398-1.
|
[136] |
赵克勤. 反偏联系数[C]. 中国人工智能学会第12届全国学术年会论文汇编, 哈尔滨, 2007: 66–67.
ZHAO Keqin. Anti-partial linkage number[C]. Progress in Artificial Intelligence in China, Harbin, China, 2007: 66–67.
|
[137] |
王万军. 一种基于偏联系数的区间数排序方法及其应用[J]. 甘肃联合大学学报:自然科学版, 2008, 22(1): 48–50. doi: 10.13804/j.cnki.2095-6991.2008.01.007.
WANG Wanjun. Ranking and application of interval numbers based on partial connection numbers[J]. Journal of Gansu Lianhe University:Natural Sciences, 2008, 22(1): 48–50. doi: 10.13804/j.cnki.2095-6991.2008.01.007.
|
[138] |
王万军. 一种基于集对决策的偏联系数方法[J]. 甘肃联合大学学报:自然科学版, 2009, 23(3): 43–45. doi: 10.3969/j.issn.1672-691X.2009.03.013.
WANG Wanjun. A decision method in parital connection number based on SPA[J]. Journal of Gansu Lianhe University:Natural Sciences, 2009, 23(3): 43–45. doi: 10.3969/j.issn.1672-691X.2009.03.013.
|
[139] |
王万军, 李恒杰, 胡建军, 等. 一种Vague值转化Fuzzy值的偏联系数方法[J]. 计算机工程与应用, 2013, 49(1): 134–136. doi: 10.3778/j.issn.1002-8331.1112-0329.
WANG Wanjun, LI Hengjie, HU Jianjun, et al. Partial connection number method for transforming Vague value into Fuzzy value[J]. Computer Engineering and Applications, 2013, 49(1): 134–136. doi: 10.3778/j.issn.1002-8331.1112-0329.
|
[140] |
晏燕, 王万军. 偏联系数隐私风险态势评估方法[J]. 计算机工程与应用, 2018, 54(10): 143–148. doi: 10.3778/j.issn.1002-8331.1612-0444.
YAN Yan and WANG Wanjun. Privacy risk situation assessment method based on partial connection numbers[J]. Computer Engineering and Applications, 2018, 54(10): 143–148. doi: 10.3778/j.issn.1002-8331.1612-0444.
|
[141] |
沈定珠. 体育用联系数学[M]. 北京: 中国教育文化出版社, 2007: 1–192.
SHEN Dingzhu. Contact Mathematics for Sports[M]. Beijing: China Education and Culture Press, 2007: 1–192.
|
[142] |
陆广地, 吴陈. 基于联系数伴随函数的区间数多属性决策[J]. 模糊系统与数学, 2018, 32(1): 182–190.
LU Guangdi and WU Chen. Interval number multiple-attribute decision-making based on adjoint functions of connection number[J]. Fuzzy Systems and Mathematics, 2018, 32(1): 182–190.
|
[143] |
金菊良, 张浩宇, 崔毅, 等. 联系数伴随函数的若干问题探讨[J]. 黑龙江大学工程学报, 2020, 11(2): 1–10. doi: 10.13524/j.2095-008x.2020.02.015.
JIN Juliang, ZHANG Haoyu, CUI Yi, et al. Discussions on some problems for adjoint function of connection number[J]. Journal of Engineering of Heilongjiang University, 2020, 11(2): 1–10. doi: 10.13524/j.2095-008x.2020.02.015.
|
[144] |
赵克勤, 赵森烽. 奇妙的联系数[M]. 北京: 知识产权出版社, 2014.
ZHAO Keqin and ZHAO Senfeng. Fantastic Contact Number[M]. Beijing: Intellectual Property Publishing House, 2014.
|
[145] |
蒋云良, 赵克勤, 刘以安, 等. 信息处理集对分析[M]. 北京: 清华大学出版社, 2015.
JIANG Yunliang, ZHAO Keqin, LIU Yian, et al. Set Pair Analysis of Information Processing[M]. Beijing: Tsinghua University Press, 2015.
|
[146] |
DATTA B K and HAIDER M R. The double burden of overweight or obesity and anemia among women married as children in India: A case of the Simpson's paradox[J]. Obesity Research & Clinical Practice, 2022, 16(5): 364–372. doi: 10.1016/j.orcp.2022.09.002.
|
[147] |
李国重, 许伟, 韩松辉, 等. 辛普森悖论产生机理的数学解析[J]. 信息工程大学学报, 2019, 20(2): 242–245. doi: CNKI:SUN:XXGC.0.2019-02-020.
LI Guozhong, XU Wei, HAN Songhui et al. Mathematical analysis of Simpson Paradox[J]. Journal of Information Engineering University, 2019, 20(2): 242–245. doi: CNKI:SUN:XXGC.0.2019-02-020.
|
[148] |
中国逻辑学会辩证逻辑研究会编, 辩证逻辑研究[C]. 上海人民出版社, 1981年.
Dialectical Logic Research Institute, Chinese Logic Society, Eds. Research on Dialectical Logic[M]. Shanghai People's Publishing House, 1981.
|
[149] |
林达华. 集合论: 现代数学的共同基础[J]. 高等数学研究, 2019, 22(1): 83. doi: CNKI:SUN:XUSJ.0.2019-01-024.
LIN Dahua. Set Theory: The Common Foundation of Modern Mathematics[J]. Research in Advanced Mathematics, 2019, 22(1): 83. doi: CNKI:SUN:XUSJ.0.2019-01-024.
|
[150] |
WANG Jing, LAN Siwu, LI Xiangyu, et al. Research on the method of hypergraph construction of information systems based on set pair distance measurement[J]. Electronics, 2023, 12(20): 4375. doi: 10.3390/electronics12204375.
|
[151] |
TENG Zhijun, LI Mingzhe, YU Libo, et al. Sinkhole attack defense strategy integrating SPA and jaya algorithms in wireless sensor networks[J]. Sensors, 2023, 23(24).
|