Citation: | XIAO Jiang, WU Enping, ZHANG Shijie, FU Zihao, JIN Hai. ErlangShen: Efficient Transaction Execution Mechanism for Graphical Blockchain Based on Pipeline with Low Access Cost[J]. Journal of Electronics & Information Technology, 2024, 46(5): 2111-2121. doi: 10.11999/JEIT230874 |
[1] |
ZETZSCHE D A, ARNER D W, and BUCKLEY R P. Decentralized finance[J]. Journal of Financial Regulation, 2020, 6(2): 172–203. doi: 10.1093/jfr/fjaa010.
|
[2] |
郝敏, 叶东东, 余荣, 等. 区块链赋能的6G零信任车联网可信接入方案[J]. 电子与信息学报, 2022, 44(9): 3004–3013. doi: 10.11999/JEIT220370.
HAO Min, YE Dongdong, YU Rong, et al. Blockchain empowered trustworthy access scheme for 6G zero-trust vehicular networks[J]. Journal of Electronics & Information Technology, 2022, 44(9): 3004–3013. doi: 10.11999/JEIT220370.
|
[3] |
张海波, 徐蓬勃, 王汝言, 等. 区块链下基于蛛网模型的新能源汽车能源交易机制研究[J]. 电子与信息学报. doi: 10.11999/JEIT221386.
ZHANG Haibo, XU Pengbo, WANG Ruyan, et al. Research on energy trading mechanism of new energy vehicles based on cobweb model under blockchain[J]. Journal of Electronics & Information Technology. doi: 10.11999/JEIT221386.
|
[4] |
潘晨, 刘志强, 刘振, 等. 区块链可扩展性研究: 问题与方法[J]. 计算机研究与发展, 2018, 55(10): 2099–2110. doi: 10.7544/issn1000-1239.2018.20180440.
PAN Chen, LIU Zhiqiang, LIU Zhen, et al. Research on scalability of blockchain technology: Problems and methods[J]. Journal of Computer Research and Development, 2018, 55(10): 2099–2110. doi: 10.7544/issn1000-1239.2018.20180440.
|
[5] |
NAKAMOTO S. Bitcoin: A peer-to-peer electronic cash system[EB/OL]. https://bitcoin.org/bitcoin.pdf, 2023.
|
[6] |
BAIRD L. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance[EB/OL]. https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf, 2016.
|
[7] |
LEMAHIEU C. Nano: A feeless distributed cryptocurrency network[EB/OL]. https://content.nano.org/whitepaper/Nano_Whitepaper_en.pdf, 2018.
|
[8] |
Taraxa whitepaper[EB/OL]. https://docs.taraxa.io/tech-whitepaper/abstract, 2023.
|
[9] |
Aleph zero whitepaper[EB/OL]. https://docs.alephzero.org/aleph-zero/explore/whitepapers, 2023.
|
[10] |
CHOI S M, PARK J, NGUYEN Q, et al. Fantom: A scalable framework for asynchronous distributed systems[EB/OL]. https://doi.org/10.48550/arXiv.1810.10360, 2018.
|
[11] |
LI Chenxing, LI Peilun, ZHOU Dong, et al. A decentralized blockchain with high throughput and fast confirmation[C]. 2020 USENIX Annual Technical Conference, 2020: 515–528. https://www.usenix.org/conference/atc20/presentation/li-chenxing.
|
[12] |
YU Haifeng, NIKOLIĆ I, HOU Ruomu, et al. OHIE: Blockchain scaling made simple[C]. 2020 IEEE Symposium on Security and Privacy, San Francisco, USA, 2020: 90–105. doi: 10.1109/SP40000.2020.00008.
|
[13] |
XU Jie, CHENG Yingying, WANG Cong, et al. Occam: A secure and adaptive scaling scheme for permissionless blockchain[C]. 2021 IEEE 41st International Conference on Distributed Computing Systems, Washington, USA, 2021: 618–628. doi: 10.1109/ICDCS51616.2021.00065.
|
[14] |
高政风, 郑继来, 汤舒扬, 等. 基于DAG的分布式账本共识机制研究[J]. 软件学报, 2020, 31(4): 1124–1142. doi: 10.3969/j.issn.1000-9825.2020.04.018.
GAO Zhengfeng, ZHENG Jilai, TANG Shuyang, et al. State-of-the-art survey of consensus mechanisms on DAG-based distributed ledger[J]. Journal of Software, 2020, 31(4): 1124–1142. doi: 10.3969/j.issn.1000-9825.2020.04.018.
|
[15] |
KEIDAR I, KOKORIS-KOGIAS E, NAOR O, et al. All you need is DAG[C]. 2021 ACM Symposium on Principles of Distributed Computing, Italy, 2021: 165–175. doi: 10.1145/3465084.3467905.
|
[16] |
SPIEGELMAN A, GIRIDHARAN N, SONNINO A, et al. Bullshark: DAG BFT protocols made practical[C]. 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 2705–2718. doi: 10.1145/3548606.3559361.
|
[17] |
DANEZIS G, KOKORIS-KOGIAS L, SONNINO A, et al. Narwhal and tusk: A DAG-based mempool and efficient BFT consensus[C]. 17th European Conference on Computer Systems, Rennes, France, 2022: 34–50. doi: 10.1145/3492321.3519594.
|
[18] |
陈友荣, 章阳, 陈浩, 等. 面向车联网异构节点的区块链高效一致性共识算法研究[J]. 电子与信息学报, 2022, 44(1): 314–323. doi: 10.11999/JEIT201065.
CHEN Yourong, ZHANG Yang, CHEN Hao, et al. Efficient consistency consensus algorithm of blockchain for heterogeneous nodes in the internet of vehicles[J]. Journal of Electronics & Information Technology, 2022, 44(1): 314–323. doi: 10.11999/JEIT201065.
|
[19] |
POPOV S. The tangle[EB/OL]. http://cryptoverze.s3.us-east-2.amazonaws.com/wp-content/uploads/2018/11/10012054/IOTA-MIOTA-Whitepaper.pdf, 2017.
|
[20] |
SOMPOLINSKY V, LEWENBERG Y, and ZOHAR A. SPECTRE: A fast and scalable cryptocurrency protocol[J]. IACR Cryptology ePrint Archive, 2016, 2016: 1159.
|
[21] |
BAGARIA V, KANNAN S, TSE D, et al. Prism: Deconstructing the blockchain to approach physical limits[C]. 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 2019: 585–602. doi: 10.1145/3319535.3363213.
|
[22] |
WOOD G. Ethereum Yellow Paper: A formal specification of Ethereum, a programmable blockchain[EB/OL]. https://ethereum.github.io/yellowpaper/paper.pdf, 2023.
|
[23] |
ANDROULAKI E, BARGER A, BORTNIKOV V, et al. Hyperledger fabric: A distributed operating system for permissioned blockchains[C]. 13th European Conference on Computer Systems, Porto, Portugal, 2018: 30. doi: 10.1145/3190508.3190538.
|
[24] |
PENG Zeshun, ZHANG Yanfeng, XU Qian, et al. NeuChain: A fast permissioned blockchain system with deterministic ordering[J]. Proceedings of the VLDB Endowment, 2022, 15(11): 2585–2598. doi: 10.14778/35517 93.3551816.
|
[25] |
KIM J Y, LEE J, KOO Y, et al. Ethanos: Efficient bootstrapping for full nodes on account-based blockchain[C]. 16th European Conference on Computer Systems, UK, 2021: 99–113. doi: 10.1145/3447786.3456231.
|
[26] |
LI Chenxing, BEILLAHI S M, YANG Guang, et al. LVMT: An efficient authenticated storage for blockchain[C]. 17th USENIX Symposium on Operating Systems Design and Implementation, Boston, USA, 2023: 135–153.
|
[27] |
PONNAPALLI S, SHAH A, BANERJEE S, et al. RainBlock: Faster transaction processing in public blockchains[C]. 2021 USENIX Annual Technical Conference, 2021: 333–347. https://www.usenix.org/conference/atc21/presentation/ponnapalli.
|
[28] |
TAFT R, MANSOUR E, SERAFINI M, et al. E-store: Fine-grained elastic partitioning for distributed transaction processing systems[J]. Proceedings of the VLDB Endowment, 2014, 8(3): 245–256. doi: 10.14778/2735508.2735514.
|
[29] |
XIAO Jiang, ZHANG Shijie, ZHANG Zhiwei, et al. Nezha: Exploiting concurrency for transaction processing in DAG-based blockchains[C]. IEEE 42nd International Conference on Distributed Computing Systems, Bologna, Italy, 2022: 269–279. doi: 10.1109/ICDCS54860.2022.00034.
|
[30] |
THOMSON A, DIAMOND T, WENG Shuchun, et al. Calvin: Fast distributed transactions for partitioned database systems[C]. 2012 ACM SIGMOD International Conference on Management of Data, Scottsdale, USA, 2012: 1–12. doi: 10.1145/2213836.2213838.
|
[31] |
CHEN Zhihao, QI Xiaodong, DU Xiaofan, et al. PEEP: A parallel execution engine for permissioned blockchain systems[C]. 26th International Conference on Database Systems for Advanced Applications, Taipei, China, 2021: 341–357. doi: 10.1007/978-3-030-73200-4_24.
|
[32] |
Ethereum browser[EB/OL]. https://etherscan.io/chart/address, 2023.
|