| Citation: | DU Tongchun, WANG Bo, CHENG Haoran, LUO Le, ZENG Nengmin. Multi-Agent Deep Reinforcement Learning with Clustering and Information Sharing for Traffic Light Cooperative Control[J]. Journal of Electronics & Information Technology, 2024, 46(2): 538-545. doi: 10.11999/JEIT230857 | 
 
	                | [1] | PANDIT K, GHOSAL D, ZHANG H M,  et al. Adaptive traffic signal control with vehicular ad hoc networks[J]. IEEE Transactions on Vehicular Technology, 2013, 62(4): 1459–1471. doi:  10.1109/TVT.2013.2241460. | 
| [2] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing,    et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi:  10.1109/CVPR.2016.90. | 
| [3] | 邵明莉, 曹鹗, 胡铭, 等. 面向优先车辆感知的交通灯优化控制方法[J]. 软件学报, 2021, 32(8): 2425–2438. doi:  10.13328/j.cnki.jos.006191. SHAO Mingli, CAO E, HU Ming,  et al. Traffic light optimization control method for priority vehicle awareness[J]. Journal of Software, 2021, 32(8): 2425–2438. doi:  10.13328/j.cnki.jos.006191. | 
| [4] | HADDAD T A, HEDJAZI D, and AOUAG S. A new deep reinforcement learning-based adaptive traffic light control approach for isolated intersection[C]. The 5th International Symposium on Informatics and its Applications, M'sila, Algeria, 2022: 1–6. doi:  10.1109/ISIA55826.2022.9993598. | 
| [5] | GENDERS W and RAZAVI S. Using a deep reinforcement learning agent for traffic signal control[J]. arXiv preprint arXiv: 1611.01142, 2016. | 
| [6] | TIGGA A, HOTA L, PATEL S,    et al. A deep Q-learning-based adaptive traffic light control system for urban safety[C]. The 4th International Conference on Advances in Computing, Communication Control and Networking, Greater Noida, India, 2022: 2430–2435. doi:  10.1109/ICAC3N56670.2022.10074123. | 
| [7] | 邹翔宇, 黄崇文, 徐勇军, 等. 基于深度学习的通信系统中安全能效的控制[J]. 电子与信息学报, 2022, 44(7): 2245–2252. doi:  10.11999/JEIT211611. ZOU Xiangyu, HUANG Chongwen, XU Yongjun,  et al. Secure energy efficiency in communication systems based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2245–2252. doi: 10.11999/JEIT   211611. | 
| [8] | 唐伦, 李质萱, 蒲昊, 等. 基于多智能体深度强化学习的无人机动态预部署策略[J]. 电子与信息学报, 2023, 45(6): 2007–2015. doi:  10.11999/JEIT220513. TANG Lun, LI Zhixuan, PU Hao,  et al. A dynamic pre-deployment strategy of UAVs based on multi-agent deep reinforcement learning[J]. Journal of Electronics & Information Technology, 2023, 45(6): 2007–2015. doi:  10.11999/JEIT220513. | 
| [9] | KANG Leilei, HUANG Hao, LU Weike,  et al. A dueling deep Q-network method for low-carbon traffic signal control[J]. Applied Soft Computing, 2023, 141: 110304. doi:  10.1016/j.asoc.2023.110304. | 
| [10] | TUNC I and SOYLEMEZ M T. Fuzzy logic and deep Q learning based control for traffic lights[J]. Alexandria Engineering Journal, 2023, 67: 343–359. doi:  10.1016/j.aej.2022.12.028. | 
| [11] | BÁLINT K, TAMÁS T, and TAMÁS B. Deep reinforcement learning based approach for traffic signal control[J]. Transportation Research Procedia, 2022, 62: 278–285. doi:  10.1016/j.trpro.2022.02.035. | 
| [12] | RASHID T, SAMVELYAN M, DE WITT C S,    et al. QMIX: Monotonic value function factorisation for deep multi-agent reinforcement Learning[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 6846–6859. | 
| [13] | SON K, KIM D, KANG W J,    et al. QTRAN: Learning to factorize with transformation for cooperative multi-agent reinforcement learning[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 5887–5896. | 
| [14] | LOWE R, WU Y I, TAMAR A,    et al. Multi-agent actor-critic for mixed cooperative-competitive environments[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6382–6393. | 
| [15] | FOERSTER J, FARQUHAR G, AFOURAS T,    et al. Counterfactual multi-agent policy gradients[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018. doi:  10.1609/aaai.v32i1.11794. | 
| [16] | SU Haoran, ZHONG Y D, DEY B,    et al. EMVLight: A decentralized reinforcement learning framework for efficient passage of emergency vehicles[C]. The 36th AAAI Conference on Artificial Intelligence, 2021: 4593–4601. doi:  10.48550/arXiv.2109.05429. | 
| [17] | YANG Shantian, YANG Bo, ZENG Zheng,  et al. Causal inference multi-agent reinforcement learning for traffic signal control[J]. Information Fusion, 2023, 94: 243–256. doi:  10.1016/j.inffus.2023.02.009. | 
| [18] | WANG Zixin, ZHU Hanyu, HE Mingcheng,  et al. GAN and multi-agent DRL based decentralized traffic light signal control[J]. IEEE Transactions on Vehicular Technology, 2022, 71(2): 1333–1348. doi:  10.1109/TVT.2021.3134329. | 
| [19] | 丛珊. 基于多智能体强化学习的交通信号灯协同控制算法的研究[D]. [硕士论文], 南京信息工程大学, 2022. doi:  10.27248/d.cnki.gnjqc.2022.000386. CONG Shan. Multi-agent deep reinforcement learning based traffic light cooperative control[D]. [Master dissertation], Nanjing University of Information Science & Technology, 2022. doi:  10.27248/d.cnki.gnjqc.2022.000386. | 
| [20] | ZHU Ruijie, LI Lulu, WU Shuning,  et al. Multi-agent broad reinforcement learning for intelligent traffic light control[J]. Information Sciences, 2023, 619: 509–525. doi:  10.1016/j.ins.2022.11.062. | 
| [21] | FRITZKE B. A growing neural gas network learns topologies[C]. The 7th International Conference on Neural Information Processing Systems, Denver, USA, 1994: 625–632. | 
