Advanced Search
Volume 46 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
TAN Ling, KANG Ruixing, XIA Jingming, WANG Yue. A Photovoltaic Power Prediction Model Integrating Multi-source Heterogeneous Meteorological Data[J]. Journal of Electronics & Information Technology, 2024, 46(2): 503-517. doi: 10.11999/JEIT230731
Citation: TAN Ling, KANG Ruixing, XIA Jingming, WANG Yue. A Photovoltaic Power Prediction Model Integrating Multi-source Heterogeneous Meteorological Data[J]. Journal of Electronics & Information Technology, 2024, 46(2): 503-517. doi: 10.11999/JEIT230731

A Photovoltaic Power Prediction Model Integrating Multi-source Heterogeneous Meteorological Data

doi: 10.11999/JEIT230731
  • Received Date: 2023-07-19
  • Rev Recd Date: 2023-09-28
  • Available Online: 2023-10-10
  • Publish Date: 2024-02-29
  • High-precision photovoltaic power prediction is of great significance for improving the operation efficiency of power system. Photovoltaic power is affected by many factors, among which cloud change is the most important uncertain factor. However, the traditional photovoltaic power prediction methods do not fully consider the influence of cloud three-dimensional structure and meteorological factors on photovoltaic power. To solve this problem, a Multi-source variables Photovoltaic power Prediction Model (MPPM) based on integrating multi-source heterogeneous meteorological data is proposed. The core of MPPM includes SpatioTemporal feature Conditional Diffusion Model (STCDM), Attention Stacked LSTM network (ASLSTM) and Multidimensional Feature Fusion Module (MFFM). STCDM accurately predicts the two-dimensional satellite cloud image, eliminating the blurring phenomenon at the cloud boundary. ASLSTM extracts the three-dimensional Weather Research and Forecasting model (WRF) meteorological element features. MFFM fuses the two-dimensional satellite cloud image features and three-dimensional WRF meteorological element features to obtain the photovoltaic power prediction results for the next 1 h. In this paper, satellite cloud image prediction experiment and photovoltaic power prediction experiment are carried out by using STCDM model and MPPM model respectively. The results show that the Structural SIMilarity index (SSIM) of STCDM in satellite cloud image prediction within 1 h is up to 0.914, and the CORRelation index (CORR) of MPPM in photovoltaic power prediction within 1 h is up to 0.949, which are superior to all comparison algorithms.
  • loading
  • [1]
    陈晨, 袁绍军, 尹兆磊, 等. 一种分布式发电功率时间序列波动性量化评估方法[J]. 电子与信息学报, 2022, 44(11): 3825–3832. doi: 10.11999/JEIT220096.

    CHEN Chen, YUAN Shaojun, YIN Zhaolei, et al. A fluctuation quantitative evaluation method for distributed energy power time series[J]. Journal of Electronics &Information Technology, 2022, 44(11): 3825–3832. doi: 10.11999/JEIT220096.
    [2]
    吴忠强, 曹碧莲, 侯林成, 等. 基于改进多元宇宙优化算法的光伏系统最大功率点跟踪[J]. 电子与信息学报, 2021, 43(12): 3735–3742. doi: 10.11999/JEIT200599.

    WU Zhongqiang, CAO Bilian, HOU Lincheng, et al. Maximum power point tracking for photovoltaic system based on improved multi-verse optimization[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3735–3742. doi: 10.11999/JEIT200599.
    [3]
    ETXEGARAI G, LÓPEZ A, AGINAKO N, et al. An analysis of different deep learning neural networks for intra-hour solar irradiation forecasting to compute solar photovoltaic generators’ energy production[J]. Energy for Sustainable Development, 2022, 68: 1–17. doi: 10.1016/j.esd.2022.02.002.
    [4]
    GIGONI L, BETTI A, CRISOSTOMI E, et al. Day-Ahead hourly forecasting of power generation from photovoltaic plants[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 831–842. doi: 10.1109/TSTE.2017.2762435.
    [5]
    MA Yanhong, LV Qingquan, ZHANG Ruixiao, et al. Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting[J]. Energy Reports, 2021, 7: 5495–5509. doi: 10.1016/j.egyr.2021.08.167.
    [6]
    张俊, 贺旭, 陆春良, 等. 基于数值天气预报的光伏功率短期预测分类组合算法[J]. 广东电力, 2019, 32(6): 55–60. doi: 10.3969/j.issn.1007-290X.2019.006.008.

    ZHANG Jun, HE Xu, LU Chunliang, et al. Classification and combination algorithm for photovotaic power short-term forecasting based on numerical weather prediction[J]. Guangdong Electric Power, 2019, 32(6): 55–60. doi: 10.3969/j.issn.1007-290X.2019.006.008.
    [7]
    YAO Tiechui, WANG Jue, WU Haoyan, et al. Intra-hour photovoltaic generation forecasting based on multi-source data and deep learning methods[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 607–618. doi: 10.1109/TSTE.2021.3123337.
    [8]
    AGOUA X G, GIRARD R, and KARINIOTAKIS G. Photovoltaic power forecasting: Assessment of the impact of multiple sources of spatio-temporal data on forecast accuracy[J]. Energies, 2021, 14(5): 1432. doi: 10.3390/en14051432.
    [9]
    师浩琪, 郭力, 刘一欣, 等. 基于多源气象预报总辐照度修正的光伏功率短期预测[J]. 电力自动化设备, 2022, 42(3): 104–112. doi: 10.16081/j.epae.202201019.

    SHI Haoqi, GUO Li, LIU Yixin, et al. Short-term forecasting of photovoltaic power based on total irradiance correction of multi-source meteorological forecast[J]. Electric Power Automation Equipment, 2022, 42(3): 104–112. doi: 10.16081/j.epae.202201019.
    [10]
    AHMED R, SREERAM V, MISHRA Y, et al. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization[J]. Renewable and Sustainable Energy Reviews, 2020, 124: 109792. doi: 10.1016/j.rser.2020.109792.
    [11]
    WANG Fei, LU Xiaoxing, MEI Shengwei, et al. A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant[J]. Energy, 2022, 238: 121946. doi: 10.1016/j.energy.2021.121946.
    [12]
    SI Zhiyuan, YANG Ming, YU Yixiao, et al. Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied Energy, 2021, 302: 117514. doi: 10.1016/j.apenergy.2021.117514.
    [13]
    白捷予, 董存, 王铮, 等. 考虑云层遮挡的光伏发电功率超短期预测技术[J]. 高电压技术, 2023, 49(1): 159–168. doi: 10.13336/j.1003-6520.hve.20211769.

    BAI Jieyu, DONG Cun, WANG Zheng, et al. Ultra-short-term prediction of photovoltaic power generation considering cloud cover[J]. High Voltage Engineering, 2023, 49(1): 159–168. doi: 10.13336/j.1003-6520.hve.20211769.
    [14]
    WANG Yunbo, LONG Mingsheng, WANG Jianmin, et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]. The 31st International Conference on Neural Information Processing Systems, Red Hook, USA, 2017.
    [15]
    WANG Yunbo, JIANG Lu, YANG M H, et al. Eidetic 3D LSTM: A model for video prediction and beyond[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
    [16]
    WU Haixu, YAO Zhiyu, WANG Jianmin, et al. MotionRNN: A flexible model for video prediction with spacetime-varying motions[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 15430–15439.
    [17]
    SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Cambridge, USA, 2015.
    [18]
    WANG Fei, XUAN Zhiming, ZHEN Zhao, et al. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J]. Energy Conversion and Management, 2020, 212: 112766. doi: 10.1016/j.enconman.2020.112766.
    [19]
    LI Xianglong, MA Longfei, CHEN Ping, et al. Probabilistic solar irradiance forecasting based on XGBoost[J]. Energy Reports, 2022, 8: 1087–1095. doi: 10.1016/j.egyr.2022.02.251.
    [20]
    SHARADGA H, HAJIMIRZA S, and BALOG R S. Time series forecasting of solar power generation for large-scale photovoltaic plants[J]. Renewable Energy, 2020, 150: 797–807. doi: 10.1016/j.renene.2019.12.131.
    [21]
    HUANG Chao, CAO Longpeng, PENG Nanxin, et al. Day-ahead forecasting of hourly photovoltaic power based on robust multilayer perception[J]. Sustainability, 2018, 10(12): 4863. doi: 10.3390/su10124863.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views (966) PDF downloads(162) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return