Citation: | TAN Ling, KANG Ruixing, XIA Jingming, WANG Yue. A Photovoltaic Power Prediction Model Integrating Multi-source Heterogeneous Meteorological Data[J]. Journal of Electronics & Information Technology, 2024, 46(2): 503-517. doi: 10.11999/JEIT230731 |
[1] |
陈晨, 袁绍军, 尹兆磊, 等. 一种分布式发电功率时间序列波动性量化评估方法[J]. 电子与信息学报, 2022, 44(11): 3825–3832. doi: 10.11999/JEIT220096.
CHEN Chen, YUAN Shaojun, YIN Zhaolei, et al. A fluctuation quantitative evaluation method for distributed energy power time series[J]. Journal of Electronics &Information Technology, 2022, 44(11): 3825–3832. doi: 10.11999/JEIT220096.
|
[2] |
吴忠强, 曹碧莲, 侯林成, 等. 基于改进多元宇宙优化算法的光伏系统最大功率点跟踪[J]. 电子与信息学报, 2021, 43(12): 3735–3742. doi: 10.11999/JEIT200599.
WU Zhongqiang, CAO Bilian, HOU Lincheng, et al. Maximum power point tracking for photovoltaic system based on improved multi-verse optimization[J]. Journal of Electronics &Information Technology, 2021, 43(12): 3735–3742. doi: 10.11999/JEIT200599.
|
[3] |
ETXEGARAI G, LÓPEZ A, AGINAKO N, et al. An analysis of different deep learning neural networks for intra-hour solar irradiation forecasting to compute solar photovoltaic generators’ energy production[J]. Energy for Sustainable Development, 2022, 68: 1–17. doi: 10.1016/j.esd.2022.02.002.
|
[4] |
GIGONI L, BETTI A, CRISOSTOMI E, et al. Day-Ahead hourly forecasting of power generation from photovoltaic plants[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 831–842. doi: 10.1109/TSTE.2017.2762435.
|
[5] |
MA Yanhong, LV Qingquan, ZHANG Ruixiao, et al. Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting[J]. Energy Reports, 2021, 7: 5495–5509. doi: 10.1016/j.egyr.2021.08.167.
|
[6] |
张俊, 贺旭, 陆春良, 等. 基于数值天气预报的光伏功率短期预测分类组合算法[J]. 广东电力, 2019, 32(6): 55–60. doi: 10.3969/j.issn.1007-290X.2019.006.008.
ZHANG Jun, HE Xu, LU Chunliang, et al. Classification and combination algorithm for photovotaic power short-term forecasting based on numerical weather prediction[J]. Guangdong Electric Power, 2019, 32(6): 55–60. doi: 10.3969/j.issn.1007-290X.2019.006.008.
|
[7] |
YAO Tiechui, WANG Jue, WU Haoyan, et al. Intra-hour photovoltaic generation forecasting based on multi-source data and deep learning methods[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 607–618. doi: 10.1109/TSTE.2021.3123337.
|
[8] |
AGOUA X G, GIRARD R, and KARINIOTAKIS G. Photovoltaic power forecasting: Assessment of the impact of multiple sources of spatio-temporal data on forecast accuracy[J]. Energies, 2021, 14(5): 1432. doi: 10.3390/en14051432.
|
[9] |
师浩琪, 郭力, 刘一欣, 等. 基于多源气象预报总辐照度修正的光伏功率短期预测[J]. 电力自动化设备, 2022, 42(3): 104–112. doi: 10.16081/j.epae.202201019.
SHI Haoqi, GUO Li, LIU Yixin, et al. Short-term forecasting of photovoltaic power based on total irradiance correction of multi-source meteorological forecast[J]. Electric Power Automation Equipment, 2022, 42(3): 104–112. doi: 10.16081/j.epae.202201019.
|
[10] |
AHMED R, SREERAM V, MISHRA Y, et al. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization[J]. Renewable and Sustainable Energy Reviews, 2020, 124: 109792. doi: 10.1016/j.rser.2020.109792.
|
[11] |
WANG Fei, LU Xiaoxing, MEI Shengwei, et al. A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant[J]. Energy, 2022, 238: 121946. doi: 10.1016/j.energy.2021.121946.
|
[12] |
SI Zhiyuan, YANG Ming, YU Yixiao, et al. Photovoltaic power forecast based on satellite images considering effects of solar position[J]. Applied Energy, 2021, 302: 117514. doi: 10.1016/j.apenergy.2021.117514.
|
[13] |
白捷予, 董存, 王铮, 等. 考虑云层遮挡的光伏发电功率超短期预测技术[J]. 高电压技术, 2023, 49(1): 159–168. doi: 10.13336/j.1003-6520.hve.20211769.
BAI Jieyu, DONG Cun, WANG Zheng, et al. Ultra-short-term prediction of photovoltaic power generation considering cloud cover[J]. High Voltage Engineering, 2023, 49(1): 159–168. doi: 10.13336/j.1003-6520.hve.20211769.
|
[14] |
WANG Yunbo, LONG Mingsheng, WANG Jianmin, et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]. The 31st International Conference on Neural Information Processing Systems, Red Hook, USA, 2017.
|
[15] |
WANG Yunbo, JIANG Lu, YANG M H, et al. Eidetic 3D LSTM: A model for video prediction and beyond[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[16] |
WU Haixu, YAO Zhiyu, WANG Jianmin, et al. MotionRNN: A flexible model for video prediction with spacetime-varying motions[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 15430–15439.
|
[17] |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Cambridge, USA, 2015.
|
[18] |
WANG Fei, XUAN Zhiming, ZHEN Zhao, et al. A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework[J]. Energy Conversion and Management, 2020, 212: 112766. doi: 10.1016/j.enconman.2020.112766.
|
[19] |
LI Xianglong, MA Longfei, CHEN Ping, et al. Probabilistic solar irradiance forecasting based on XGBoost[J]. Energy Reports, 2022, 8: 1087–1095. doi: 10.1016/j.egyr.2022.02.251.
|
[20] |
SHARADGA H, HAJIMIRZA S, and BALOG R S. Time series forecasting of solar power generation for large-scale photovoltaic plants[J]. Renewable Energy, 2020, 150: 797–807. doi: 10.1016/j.renene.2019.12.131.
|
[21] |
HUANG Chao, CAO Longpeng, PENG Nanxin, et al. Day-ahead forecasting of hourly photovoltaic power based on robust multilayer perception[J]. Sustainability, 2018, 10(12): 4863. doi: 10.3390/su10124863.
|