Citation: | YANG Tian, WANG Gang, LAI Jian, WANG Yang. Pedestrian Trajectory Prediction Method Based on Information Fractals[J]. Journal of Electronics & Information Technology, 2024, 46(2): 527-537. doi: 10.11999/JEIT230726 |
[1] |
PANG Shumin, CAO Jinxin, JIAN Meiying, et al. BR-GAN: A pedestrian trajectory prediction model combined with behavior recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24609–24620. doi: 10.1109/TITS.2022.3193442.
|
[2] |
孔玮, 刘云, 李辉, 等. 基于深度学习的行人轨迹预测方法综述[J]. 控制与决策, 2021, 36(12): 2841–2850. doi: 10.13195/j.kzyjc.2020.1841.
KONG Wei, LIU Yun, LI Hui, et al. Survey of pedestrian trajectory prediction methods based on deep learning[J]. Control and Decision, 2021, 36(12): 2841–2850. doi: 10.13195/j.kzyjc.2020.1841.
|
[3] |
WANG Meiming and REN Jing. Neither too much nor too little: Leveraging moderate data in pedestrian trajectory prediction[C]. Proceedings of 2020 International Conference on Artificial Intelligence and Computer Engineering, Beijing, China, 2020: 444–448. doi: 10.1109/ICAICE51518.2020.00093.
|
[4] |
CHEN Kai, SONG Xiao, and REN Xiaoxiang. Pedestrian trajectory prediction in heterogeneous traffic using pose keypoints-based convolutional encoder-decoder network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1764–1775. doi: 10.1109/TCSVT.2020.3013254.
|
[5] |
CAI Yingfeng, DAI Lei, WANG Hai, et al. Pedestrian motion trajectory prediction in intelligent driving from far shot first-person perspective video[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5298–5313. doi: 10.1109/TITS.2021.3052908.
|
[6] |
ZHU Q. Hidden Markov model for dynamic obstacle avoidance of mobile robot navigation[J]. IEEE Transactions on Robotics and Automation, 1991, 7(3): 390–397. doi: 10.1109/70.88149.
|
[7] |
HELBING D and MOLNAR P. Social force model for pedestrian dynamics[J]. Physical Review E, 1995, 51(5): 4282–4286. doi: 10.1103/PhysRevE.51.4282.
|
[8] |
WANG Chuhua, WANG Chuhua, XU Mingze, et al. Stepwise goal-driven networks for trajectory prediction[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2716–2723. doi: 10.1109/LRA.2022.3145090.
|
[9] |
SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: An attentive GAN for predicting paths compliant to social and physical constraints[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1349–1358. doi: 10.1109/CVPR.2019.00144.
|
[10] |
GUPTA A, JOHNSON J, FEI-FEI L, et al. Social GAN: Socially acceptable trajectories with generative adversarial networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2255–2264. doi: 10.1109/CVPR.2018.00240.
|
[11] |
李琳辉, 周彬, 连静, 等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020, 41(6): 175–183. doi: 10.11959/j.issn.1000-436x.2020100.
LI Linhui, ZHOU Bin, and LIAN Jing, et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on Communications, 2020, 41(6): 175–183. doi: 10.11959/j.issn.1000-436x.2020100.
|
[12] |
LIAN Jing, REN Weiwei, LI Linhui, et al. PTP-STGCN: Pedestrian trajectory prediction based on a spatio-temporal graph convolutional neural network[J]. Applied Intelligence, 2023, 53(3): 2862–2878. doi: 10.1007/s10489-022-03524-1.
|
[13] |
SYED A and MORRIS B T. SSeg-LSTM: Semantic scene segmentation for trajectory prediction[C]. Proceedings of 2019 IEEE Intelligent Vehicles Symposium, Paris, France, 2019: 2504–2509. doi: 10.1109/IVS.2019.8813801.
|
[14] |
HU Hongyu, WANG Qi, DU Laigang, et al. Vehicle trajectory prediction considering aleatoric uncertainty[J]. Knowledge-Based Systems, 2022, 255: 109617. doi: 10.1016/j.knosys.2022.109617.
|
[15] |
XIAO Fuyuan and PEDRYCZ W. Negation of the quantum mass function for multisource quantum information fusion with its application to pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2054–2070. doi: 10.1109/TPAMI.2022.3167045.
|
[16] |
XIAO Fuyuan, CAO Zehong, and LIN C T. A complex weighted discounting multisource information fusion with its application in pattern classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 7609–7623. doi: 10.1109/TKDE.2022.3206871.
|
[17] |
XIAO Fuyuan. CEQD: A complex mass function to predict interference effects[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7402–7414. doi: 10.1109/TCYB.2020.3040770.
|
[18] |
DENG Yong. Information volume of mass function[J]. International Journal of Computers Communications & Control, 2020, 15(6): 3983.
|
[19] |
DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325–339. doi: 10.1214/aoms/1177698950.
|
[20] |
DENG Yong. Random permutation set[J]. International Journal of Computers Communications & Control, 2022, 17(1): 4542. doi: 10.15837/ijccc.2022.1.4542.
|
[21] |
QIANG Chenhui, DENG Yong, and CHEONG K H. Information fractal dimension of mass function[J]. Fractals, 2022, 30(6): 2250110. doi: 10.1142/S0218348X22501109.
|
[22] |
CASTILLO O and MELIN P. Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic[J]. Chaos, Solitons & Fractals, 2020, 140: 110242. doi: 10.1016/j.chaos.2020.110242.
|
[23] |
CASTILLO O and MELIN P. A new approach for plant monitoring using type-2 fuzzy logic and fractal theory[J]. International Journal of General Systems, 2004, 33(2/3): 305–319. doi: 10.1080/03081070310001633617.
|
[24] |
刘云, 薛盼盼, 李辉, 等. 基于深度学习的关节点行为识别综述[J]. 电子与信息学报, 2021, 43(6): 1789–1802. doi: 10.11999/JEIT 200267.
LIU Yun, XUE Panpan, LI Hui, et al. A review of action recognition using joints based on deep learning[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1789–1802. doi: 10.11999/JEIT200267.
|
[25] |
DENG Yong. Deng entropy[J]. Chaos, Solitons & Fractals, 2016, 91: 549–553. doi: 10.1016/j.chaos.2016.07.014.
|
[26] |
PENG Yusheng, ZHANG Gaofeng, SHI Jun, et al. SRAI-LSTM: A social relation attention-based interaction-aware LSTM for human trajectory prediction[J]. Neurocomputing, 2022, 490: 258–268. doi: 10.1016/j.neucom.2021.11.089.
|
[27] |
Syed A and Morris B T. Semantic scene upgrades for trajectory prediction[J]. Machine Vision and Applications, 2023, 34(2): 23. doi: 10.1007/s00138-022-01357-z.
|
[28] |
SEKHON J and FLEMING C. SCAN: A spatial context attentive network for joint multi-agent intent prediction[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 6119–6127. doi: 10.1609/aaai.v35i7.16762.
|