Advanced Search
Volume 46 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
YANG Tian, WANG Gang, LAI Jian, WANG Yang. Pedestrian Trajectory Prediction Method Based on Information Fractals[J]. Journal of Electronics & Information Technology, 2024, 46(2): 527-537. doi: 10.11999/JEIT230726
Citation: YANG Tian, WANG Gang, LAI Jian, WANG Yang. Pedestrian Trajectory Prediction Method Based on Information Fractals[J]. Journal of Electronics & Information Technology, 2024, 46(2): 527-537. doi: 10.11999/JEIT230726

Pedestrian Trajectory Prediction Method Based on Information Fractals

doi: 10.11999/JEIT230726
Funds:  The National Natural Science Foundation of China (62071146), Marine Economy Development Project of Guangdong Province (GDNRC [2020]014), Science and Technology Project of Shenzhen (JCYJ20200109113424990)
  • Received Date: 2023-07-19
  • Rev Recd Date: 2023-10-25
  • Available Online: 2023-10-27
  • Publish Date: 2024-02-29
  • Pedestrian trajectory prediction has been widely used in several fields, such as autonomous driving and robot navigation. In trajectory prediction, some uncertain information, such as the uncertainty of trajectory information discrimination in the discriminator and complex interactive information, bring challenges to the trajectory prediction task. In the field of uncertain information processing, information fractals can effectively deal with the uncertainty and complexity of uncertain information. Inspired by this, a trajectory prediction method based on the information fractal is proposed to fully deal with the uncertainty of trajectory information discrimination in the discriminator and improve the prediction accuracy. First, the scene and historical trajectory information are extracted by the feature extraction module. Subsequently, the scene-pedestrian interaction and pedestrian-pedestrian interaction information are obtained through the attention module. Finally, reasonable trajectories are generated using generative adversarial networks and information fractals. Experiments on the two public datasets ETH and UCY reveal that the proposed method can effectively deal with the uncertainty of trajectory information and improve the accuracy of trajectory prediction. For example, the trajectories of sudden turns, overtaking, avoidance, and other behaviors can be effectively predicted. Moreover, the Average Displacement Error (ADE) and Final Displacement Error (FDE) are reduced by an average of 11.11% and 23.48%, respectively compared with the benchmark model error.
  • loading
  • [1]
    PANG Shumin, CAO Jinxin, JIAN Meiying, et al. BR-GAN: A pedestrian trajectory prediction model combined with behavior recognition[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 24609–24620. doi: 10.1109/TITS.2022.3193442.
    [2]
    孔玮, 刘云, 李辉, 等. 基于深度学习的行人轨迹预测方法综述[J]. 控制与决策, 2021, 36(12): 2841–2850. doi: 10.13195/j.kzyjc.2020.1841.

    KONG Wei, LIU Yun, LI Hui, et al. Survey of pedestrian trajectory prediction methods based on deep learning[J]. Control and Decision, 2021, 36(12): 2841–2850. doi: 10.13195/j.kzyjc.2020.1841.
    [3]
    WANG Meiming and REN Jing. Neither too much nor too little: Leveraging moderate data in pedestrian trajectory prediction[C]. Proceedings of 2020 International Conference on Artificial Intelligence and Computer Engineering, Beijing, China, 2020: 444–448. doi: 10.1109/ICAICE51518.2020.00093.
    [4]
    CHEN Kai, SONG Xiao, and REN Xiaoxiang. Pedestrian trajectory prediction in heterogeneous traffic using pose keypoints-based convolutional encoder-decoder network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1764–1775. doi: 10.1109/TCSVT.2020.3013254.
    [5]
    CAI Yingfeng, DAI Lei, WANG Hai, et al. Pedestrian motion trajectory prediction in intelligent driving from far shot first-person perspective video[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5298–5313. doi: 10.1109/TITS.2021.3052908.
    [6]
    ZHU Q. Hidden Markov model for dynamic obstacle avoidance of mobile robot navigation[J]. IEEE Transactions on Robotics and Automation, 1991, 7(3): 390–397. doi: 10.1109/70.88149.
    [7]
    HELBING D and MOLNAR P. Social force model for pedestrian dynamics[J]. Physical Review E, 1995, 51(5): 4282–4286. doi: 10.1103/PhysRevE.51.4282.
    [8]
    WANG Chuhua, WANG Chuhua, XU Mingze, et al. Stepwise goal-driven networks for trajectory prediction[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2716–2723. doi: 10.1109/LRA.2022.3145090.
    [9]
    SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: An attentive GAN for predicting paths compliant to social and physical constraints[C]. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 1349–1358. doi: 10.1109/CVPR.2019.00144.
    [10]
    GUPTA A, JOHNSON J, FEI-FEI L, et al. Social GAN: Socially acceptable trajectories with generative adversarial networks[C]. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2255–2264. doi: 10.1109/CVPR.2018.00240.
    [11]
    李琳辉, 周彬, 连静, 等. 基于社会注意力机制的行人轨迹预测方法研究[J]. 通信学报, 2020, 41(6): 175–183. doi: 10.11959/j.issn.1000-436x.2020100.

    LI Linhui, ZHOU Bin, and LIAN Jing, et al. Research on pedestrian trajectory prediction method based on social attention mechanism[J]. Journal on Communications, 2020, 41(6): 175–183. doi: 10.11959/j.issn.1000-436x.2020100.
    [12]
    LIAN Jing, REN Weiwei, LI Linhui, et al. PTP-STGCN: Pedestrian trajectory prediction based on a spatio-temporal graph convolutional neural network[J]. Applied Intelligence, 2023, 53(3): 2862–2878. doi: 10.1007/s10489-022-03524-1.
    [13]
    SYED A and MORRIS B T. SSeg-LSTM: Semantic scene segmentation for trajectory prediction[C]. Proceedings of 2019 IEEE Intelligent Vehicles Symposium, Paris, France, 2019: 2504–2509. doi: 10.1109/IVS.2019.8813801.
    [14]
    HU Hongyu, WANG Qi, DU Laigang, et al. Vehicle trajectory prediction considering aleatoric uncertainty[J]. Knowledge-Based Systems, 2022, 255: 109617. doi: 10.1016/j.knosys.2022.109617.
    [15]
    XIAO Fuyuan and PEDRYCZ W. Negation of the quantum mass function for multisource quantum information fusion with its application to pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2054–2070. doi: 10.1109/TPAMI.2022.3167045.
    [16]
    XIAO Fuyuan, CAO Zehong, and LIN C T. A complex weighted discounting multisource information fusion with its application in pattern classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(8): 7609–7623. doi: 10.1109/TKDE.2022.3206871.
    [17]
    XIAO Fuyuan. CEQD: A complex mass function to predict interference effects[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 7402–7414. doi: 10.1109/TCYB.2020.3040770.
    [18]
    DENG Yong. Information volume of mass function[J]. International Journal of Computers Communications & Control, 2020, 15(6): 3983.
    [19]
    DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325–339. doi: 10.1214/aoms/1177698950.
    [20]
    DENG Yong. Random permutation set[J]. International Journal of Computers Communications & Control, 2022, 17(1): 4542. doi: 10.15837/ijccc.2022.1.4542.
    [21]
    QIANG Chenhui, DENG Yong, and CHEONG K H. Information fractal dimension of mass function[J]. Fractals, 2022, 30(6): 2250110. doi: 10.1142/S0218348X22501109.
    [22]
    CASTILLO O and MELIN P. Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic[J]. Chaos, Solitons & Fractals, 2020, 140: 110242. doi: 10.1016/j.chaos.2020.110242.
    [23]
    CASTILLO O and MELIN P. A new approach for plant monitoring using type-2 fuzzy logic and fractal theory[J]. International Journal of General Systems, 2004, 33(2/3): 305–319. doi: 10.1080/03081070310001633617.
    [24]
    刘云, 薛盼盼, 李辉, 等. 基于深度学习的关节点行为识别综述[J]. 电子与信息学报, 2021, 43(6): 1789–1802. doi: 10.11999/JEIT 200267.

    LIU Yun, XUE Panpan, LI Hui, et al. A review of action recognition using joints based on deep learning[J]. Journal of Electronics & Information Technology, 2021, 43(6): 1789–1802. doi: 10.11999/JEIT200267.
    [25]
    DENG Yong. Deng entropy[J]. Chaos, Solitons & Fractals, 2016, 91: 549–553. doi: 10.1016/j.chaos.2016.07.014.
    [26]
    PENG Yusheng, ZHANG Gaofeng, SHI Jun, et al. SRAI-LSTM: A social relation attention-based interaction-aware LSTM for human trajectory prediction[J]. Neurocomputing, 2022, 490: 258–268. doi: 10.1016/j.neucom.2021.11.089.
    [27]
    Syed A and Morris B T. Semantic scene upgrades for trajectory prediction[J]. Machine Vision and Applications, 2023, 34(2): 23. doi: 10.1007/s00138-022-01357-z.
    [28]
    SEKHON J and FLEMING C. SCAN: A spatial context attentive network for joint multi-agent intent prediction[C]. Proceedings of the 35th AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2021: 6119–6127. doi: 10.1609/aaai.v35i7.16762.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (457) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return