Citation: | DAI Yiran, ZHANG Jiang, XIANG Binwu, DENG Yi. Overview on the Research Status and Development Route of Fully Homomorphic Encryption Technology[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1774-1789. doi: 10.11999/JEIT230703 |
[1] |
BRICKELL E F and YACOBI Y. On privacy homomorphisms (Extended Abstract)[C]. The Workshop on the Theory and Application of Cryptographic Techniques, Amsterdam, The Netherlands, 1988: 117–125. doi: 10.1007/3-540-39118-5_12.
|
[2] |
CRAMER R, DAMGÅRD I, and NIELSEN J B. Multiparty computation from threshold homomorphic encryption[C]. The International Conference on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria, 2001: 280–300. doi: 10.1007/3-540-44987-6_18.
|
[3] |
RIVEST R L, ADLEMAN L, and DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978, 4(11): 169–179.
|
[4] |
ELGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[M]. BLAKLEY G R and CHAUM D. Advances in Cryptology. Berlin Heidelberg: Springer, 1985: 10–18. doi: 10.1007/3-540-39568-7_2.
|
[5] |
RIVEST R L, SHAMIR A, and ADLEMAN L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120–126. doi: 10.1145/359340.359342.
|
[6] |
BONEH D, GOH E J, and NISSIM K. Evaluating 2-DNF formulas on ciphertexts[C]. The Second Theory of Cryptography Conference, Cambridge, USA, 2005: 325–341. doi: 10.1007/978-3-540-30576-7_18.
|
[7] |
BEHERA S and PRATHURI J R. Design of novel hardware architecture for fully homomorphic encryption algorithms in FPGA for real-time data in cloud computing[J]. IEEE Access, 2022, 10: 131406–131418. doi: 10.1109/ACCESS.2022.3229892.
|
[8] |
LI Juyan, QIAO Zhiqi, ZHANG Kejia, et al. A lattice-based homomorphic proxy re-encryption scheme with strong anti-collusion for cloud computing[J]. Sensors, 2021, 21(1): 288. doi: 10.3390/s21010288.
|
[9] |
LEE J W, KANG H, LEE Y, et al. Privacy-preserving machine learning with fully homomorphic encryption for deep neural network[J]. IEEE Access, 2022, 10: 30039–30054. doi: 10.1109/ACCESS.2022.3159694.
|
[10] |
李腾, 方保坤, 马卓, 等. 基于同态加密的医疗数据密文异常检测方法[J]. 中国科学: 信息科学, 2023, 53(7): 1368–1391. doi: 10.1360/SSI-2022-0214.
LI Teng, FANG Baokun, MA Zhuo, et al. Homomorphic encryption-based ciphertext anomaly detection method for e-health records[J]. Scientia Sinica Informationis, 2023, 53(7): 1368–1391. doi: 10.1360/SSI-2022-0214.
|
[11] |
GENTRY C. Fully homomorphic encryption using ideal lattices[C]. The 41st Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169–169. doi: 10.1145/1536414.1536440.
|
[12] |
PEREIRA H V L. Bootstrapping fully homomorphic encryption over the integers in less than one second[C/OL]. The 24th IACR International Conference on Practice and Theory of Public Key Cryptography, 2021. doi: 10.1007/978-3-030-75245-3_13.
|
[13] |
BONTE C, ILIASHENKO I, PARK J, et al. FINAL: Faster FHE instantiated with NTRU and LWE[C]. The 28th International Conference on the Theory and Application of Cryptology and Information Security, Taipei, China, 2022. doi: 10.1007/978-3-031-22966-4_7.
|
[14] |
KLUCZNIAK K. NTRU-v-um: Secure fully homomorphic encryption from NTRU with small modulus[C]. The 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 1783–1797. doi: 10.1145/3548606.3560700.
|
[15] |
XIANG Binwu, ZHANG Jiang, DENG Yi, et al. Fast blind rotation for bootstrapping FHEs[C]. The 43rd Annual International Cryptology Conference, Santa Barbara, USA, 2023. doi: 10.1007/978-3-031-38551-3_1.
|
[16] |
STEHLÉ D, STEINFELD R, TANAKA K, et al. Efficient public key encryption based on ideal lattices[C]. The 15th International Conference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, 2009. doi: 10.1007/978-3-642-10366-7_36.
|
[17] |
SVP challenge[EB/OL]. https://www.latticechallenge.org/svp-challenge/.
|
[18] |
REGEV O. On lattices, learning with errors, random linear codes, and cryptography[C]. Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, Baltimore, USA, 2005: 84–93. doi: 10.1145/1060590.1060603.
|
[19] |
BLUM A, FURST M, KEARNS M, et al. Cryptographic primitives based on hard learning problems[C]. The 13th Annual International Cryptology Conference, Santa Barbara, USA, 1994. doi: 10.1007/3-540-48329-2_24.
|
[20] |
BRAKERSKI Z and VAIKUNTANATHAN V. Fully homomorphic encryption from ring-LWE and security for key dependent messages[C]. The 31st Annual Cryptology Conference, Santa Barbara, USA, 2011. doi: 10.1007/978-3-642-22792-9_29.
|
[21] |
GENTRY C, HALEVI S, and VAIKUNTANATHAN V. i-Hop homomorphic encryption and rerandomizable Yao circuits[C]. The 30th Annual Cryptology Conference, Santa Barbara, USA, 2010. doi: 10.1007/978-3-642-14623-7_9.
|
[22] |
KITAGAWA F and MATSUDA T. Circular security is complete for KDM security[C]. The 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, 2020. doi: 10.1007/978-3-030-64837-4_9.
|
[23] |
BRAKERSKI Z and VAIKUNTANATHAN V. Efficient fully homomorphic encryption from (standard) LWE[C]. The IEEE 52nd Annual Symposium on Foundations of Computer Science, Palm Springs, USA, 2011: 97–106. doi: 10.1109/FOCS.2011.12.
|
[24] |
GENTRY C, SAHAI A, and WATERS B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based[C]. The 33rd Annual Cryptology Conference, Santa Barbara, USA, 2013. doi: 10.1007/978-3-642-40041-4_5.
|
[25] |
CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]. The 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, 2017. doi: 10.1007/978-3-319-70694-8_15.
|
[26] |
GENTRY C. Computing arbitrary functions of encrypted data[J]. Communications of the ACM, 2010, 53(3): 97–105. doi: 10.1145/1666420.1666444.
|
[27] |
GENTRY C and HALEVI S. Implementing Gentry’s fully-homomorphic encryption scheme[C]. The 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 2011: 129–148. doi: 10.1007/978-3-642-20465-4_9.
|
[28] |
GENTRY C and HALEVI S. Fully homomorphic encryption without squashing using depth-3 arithmetic circuits[C]. The IEEE 52nd Annual Symposium on Foundations of Computer Science, Palm Springs, USA, 2011. doi: 10.1109/FOCS.2011.94.
|
[29] |
GENTRY C, HALEVI S, and SMART N P. Better bootstrapping in fully homomorphic encryption[C]. The 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, 2012: 1–16. doi: 10.1007/978-3-642-30057-8_1.
|
[30] |
BRAKERSKI Z, GENTRY C, and VAIKUNTANATHAN V. (Leveled) fully homomorphic encryption without bootstrapping[C]. The 3rd Innovations in Theoretical Computer Science Conference, Cambridge, USA, 2012. doi: 10.1145/2090236.2090262.
|
[31] |
CHEON J H, HAN K, KIM A, et al. Bootstrapping for approximate homomorphic encryption[C]. The 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, 2018. DOI: 10.1007/978-3-319-78381-9_14.
|
[32] |
LEE J W, LEE E, LEE Y, et al. High-precision bootstrapping of RNS-CKKS homomorphic encryption using optimal minimax polynomial approximation and inverse sine function[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021. doi: 10.1007/978-3-030-77870-5_22.
|
[33] |
JUTLA C S and MANOHAR N. Sine series approximation of the mod function for bootstrapping of approximate HE[R]. Paper 2021/572, 2021.
|
[34] |
BAE Y, CHEON J H, CHO W, et al. META-BTS: Bootstrapping precision beyond the limit[C]. The 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 223–234. doi: 10.1145/3548606.3560696.
|
[35] |
LI Baiyu and MICCIANCIO D. On the security of homomorphic encryption on approximate numbers[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021. doi: 10.1007/978-3-030-77870-5_23.
|
[36] |
LI Baiyu, MICCIANCIO D, SCHULTZ M, et al. Securing approximate homomorphic encryption using differential privacy[R]. Paper 2022/816, 2022.
|
[37] |
FAN Junfeng and VERCAUTEREN F. Somewhat practical fully homomorphic encryption[R]. Paper 2012/144, 2012.
|
[38] |
GENTRY C, HALEVI S, and SMART N P. Fully homomorphic encryption with polylog overhead[C]. The 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, 2012. doi: 10.1007/978-3-642-29011-4_28.
|
[39] |
GENTRY C, HALEVI S, and SMART N P. Homomorphic evaluation of the AES circuit[C]. The 32nd Annual Cryptology Conference, Santa Barbara, USA, 2012. doi: 10.1007/978-3-642-32009-5_49.
|
[40] |
HALEVI S and SHOUP V. Algorithms in HElib[C]. The 34th Annual Cryptology Conference, Santa Barbara, USA, 2014. doi: 10.1007/978-3-662-44371-2_31.
|
[41] |
HALEVI S and SHOUP V. Design and implementation of HElib: A homomorphic encryption library[R]. Paper 2020/1481, 2020.
|
[42] |
HALEVI S and SHOUP V. Bootstrapping for HElib[J]. Journal of Cryptology, 2021, 34(1): 7. doi: 10.1007/s00145-020-09368-7.
|
[43] |
KIM A, POLYAKOV Y, and ZUCCA V. Revisiting homomorphic encryption schemes for finite fields[C]. Proceedings of the 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 2021. DOI: 10.1007/978-3-030-92078-4_21.
|
[44] |
ALPERIN-SHERIFF J and PEIKERT C. Faster bootstrapping with polynomial error[C]. The 34th Annual Cryptology Conference, Santa Barbara, USA, 2014: 297–314. doi: 10.1007/978-3-662-44371-2_17.
|
[45] |
DUCAS L and MICCIANCIO D. FHEW: Bootstrapping homomorphic encryption in less than a second[C]. The 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 2015: 617–640. doi: 10.1007/978-3-662-46800-5_24.
|
[46] |
CHILLOTTI I, GAMA N, GEORGIEVA M, et al. Faster fully homomorphic encryption: Bootstrapping in less than 0.1 seconds[C]. The 22nd International Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, 2016. DOI: 10.1007/978-3-662-53887-6_1.
|
[47] |
MYERS S and SHULL A. Practical revocation and key rotation[C]. The Cryptographers’ Track at the RSA Conference 2018, San Francisco, USA, 2018. DOI: 10.1007/978-3-319-76953-0_9.
|
[48] |
LIU Fenghao and WANG Han. Batch bootstrapping II: Bootstrapping in polynomial modulus only requires $ O(1) $ FHE multiplications in amortization[C]. The 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, 2023: 353–384. doi: 10.1007/978-3-031-30620-4_12.
|
[49] |
LIU Fenghao and WANG Han. Batch bootstrapping I: A new framework for SIMD bootstrapping in polynomial modulus[C]. The 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, 2023: 321–352. doi: 10.1007/978-3-031-30620-4_11.
|
[50] |
MICCIANCIO D and REGEV O. Lattice-based cryptography[M]. BERNSTEIN D J, BUCHMANN J, and DAHMEN E. Post-Quantum Cryptography. Berlin, Heidelberg: Springer, 2009. doi: 10.1007/978-3-540-88702-7_5.
|
[51] |
AJTAI M. Generating hard instances of lattice problems (extended abstract)[C]. The Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, USA, 1996: 99–108. doi: 10.1145/237814.237838.
|
[52] |
LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings[C]. The 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 2010. doi: 10.1007/978-3-642-13190-5_1.
|
[53] |
DUCAS L and DURMUS A. Ring-LWE in polynomial rings[C]. The 15th International Conference on Practice and Theory in Public Key Cryptography, Darmstadt, Germany, 2012: 34–51. doi: 10.1007/978-3-642-30057-8_3.
|
[54] |
SMART N P and VERCAUTEREN F. Fully homomorphic SIMD operations[J]. Designs, Codes and Cryptography, 2014, 71(1): 57–81. doi: 10.1007/s10623-012-9720-4.
|
[55] |
Homenc. HElib[EB/OL].https://github.com/homenc/HElib.
|
[56] |
Microsoft. SEAL[EB/OL]. https://github.com/microsoft/SEAL.
|
[57] |
Openfheorg. Openfhe-development[EB/OL]. https://github.com/openfheorg/openfhe-development.
|
[58] |
Tfhe. Tfhe[EB/OL].https://github.com/tfhe/tfhe.
|
[59] |
Snucrypto. HEAAN[EB/OL]. https://github.com/snucrypto/HEAAN.
|
[60] |
CHOWDHURY S, SINHA S, SINGH A, et al. Efficient threshold FHE with application to real-time systems[R]. Paper 2022/1625, 2022.
|
[61] |
YUAN Minghao, WANG Dongdong, ZHANG Feng, et al. An examination of multi-key fully homomorphic encryption and its applications[J]. Mathematics, 2022, 10(24): 4678. doi: 10.3390/math10244678.
|
[62] |
PARK J and ROVIRA S. Efficient TFHE bootstrapping in the multiparty setting[R]. Paper 2023/759, 2023.
|
[63] |
DI GIUSTO A and MARCOLLA C. Breaking the power-of-two barrier: Noise estimation for BGV in NTT-friendly rings[R]. Paper 2023/783, 2023.
|
[64] |
CHEN Hao, ILIASHENKO I, and LAINE K. When HEAAN Meets FV: A new somewhat homomorphic encryption with reduced memory overhead[C]. The 18th IMA International Conference, 2021. doi: 10.1007/978-3-030-92641-0_13.
|
[65] |
AUNG K M M, LIM E, SIM J J, et al. Field instruction multiple data[R]. Paper 2022/771, 2022.
|
[66] |
LI Zengpeng and WANG Ding. Achieving one-round password-based authenticated key exchange over lattices[J]. IEEE Transactions on Services Computing, 2022, 15(1): 308–321. doi: 10.1109/TSC.2019.2939836.
|
[67] |
WANG Qingxuan, WANG Ding, CHENG Chi, et al. Quantum2FA: Efficient quantum-resistant two-factor authentication scheme for mobile devices[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(1): 193–208. doi: 10.1109/TDSC.2021.3129512.
|