| Citation: | ZHUANG Jianjun, ZHUANG Yuchen. A Cross-modal Person Re-identification Method Based on Hybrid Channel Augmentation with Structured Dual Attention[J]. Journal of Electronics & Information Technology, 2024, 46(2): 518-526. doi: 10.11999/JEIT230614 | 
 
	                | [1] | HUANG Yukun, FU Xueyang, LI Liang,  et al. Learning degradation-invariant representation for robust real-world person Re-identification[J]. International Journal of Computer Vision, 2022, 130(11): 2770–2796. doi:  10.1007/s11263-022-01666-w. | 
| [2] | YANG Lei. Continuous epoch distance integration for unsupervised person Re-identification[C]. The 5th International Conference on Communications, Information System and Computer Engineering, Guangzhou, China, 2023: 464–469. doi:  10.1109/cisce58541.2023.10142496. | 
| [3] | XUAN Shiyu and ZHANG Shiliang. Intra-inter domain similarity for unsupervised person Re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022: 1. doi:  10.1109/tpami.2022.3163451. | 
| [4] | DAI Pingyang, JI Rongrong, WANG Haibin,    et al. Cross-modality person Re-identification with generative adversarial training[C]. Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018: 677–683. doi:  10.24963/ijcai.2018/94. | 
| [5] | WANG Guan’an, ZHANG Tianzhu, CHENG Jian,    et al. RGB-infrared cross-modality person Re-identification via joint pixel and feature alignment[C]. The IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3622–3631. doi:  10.1109/ICCV.2019.00372. | 
| [6] | LU Yan, WU Yue, LIU Bin,    et al. Cross-modality person Re-identification with shared-specific feature transfer[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13376–13386. doi:  10.1109/CVPR42600.2020.01339. | 
| [7] | LI Xulin, LU Yan, LIU Bin,    et al. Counterfactual intervention feature transfer for visible-infrared person Re-identification[C]. 17th European Conference on Computer Vision, Tel Aviv, Israel, 2022: 381–398. doi:  10.1007/978-3-031-19809-0_22. | 
| [8] | 王凤随, 闫涛, 刘芙蓉, 等. 融合子空间共享特征的多尺度跨模态行人重识别方法[J]. 电子与信息学报, 2023, 45(1): 325–334. doi:  10.11999/JEIT211212. WANG Fengsui, YAN Tao, LIU Furong,  et al. Multi-scale cross-modality person Re-identification method based on shared subspace features[J]. Journal of Electronics & Information Technology, 2023, 45(1): 325–334. doi:  10.11999/JEIT211212. | 
| [9] | LIANG Tengfei, JIN Yi, LIU Wu,    et al. Cross-modality transformer with modality mining for visible-infrared person Re-identification[J]. IEEE Transactions on Multimedia, 2023: 1–13. doi:  10.1109/tmm.2023.3237155. | 
| [10] | 徐胜军, 刘求缘, 史亚, 等. 基于多样化局部注意力网络的行人重识别[J]. 电子与信息学报, 2022, 44(1): 211–220. doi: 10.11999/   JEIT201003. XU Shengjun, LIU Qiuyuan, SHI Ya,  et al. Person Re-identification based on diversified local attention network[J]. Journal of Electronics & Information Technology, 2022, 44(1): 211–220. doi:  10.11999/JEIT201003. | 
| [11] | JIA Mengxi, SUN Yifan, ZHAI Yunpeng,    et al. Semi-attention partition for occluded person Re-identification[C]. The 37th AAAI Conference on Artificial Intelligence, Washington, USA, 2023: 998–1006. doi:  10.1609/aaai.v37i1.25180. | 
| [12] | YE Mang, SHEN Jianbing, CRANDALL D J,    et al. Dynamic dual-attentive aggregation learning for visible-infrared person Re-identification[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 229–247. doi:  10.1007/978-3-030-58520-4_14. | 
| [13] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing,    et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi:  10.1109/CVPR.2016.90. | 
| [14] | WANG Qilong, WU Banggu, ZHU Pengfei,    et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531–11539. doi:  10.1109/CVPR42600.2020.01155. | 
| [15] | WU Ancong, ZHENG Weishi, YU Hongxing,    et al. RGB-infrared cross-modality person Re-identification[C]. The IEEE International Conference on Computer Vision, Venice, Italy, 2017: 5390–5399. doi:  10.1109/ICCV.2017.575. | 
| [16] | NGUYEN D T, HONG H G, KIM K W,  et al. Person recognition system based on a combination of body images from visible light and thermal cameras[J]. Sensors, 2017, 17(3): 605. doi:  10.3390/s17030605. | 
| [17] | KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi:  10.1145/3065386. | 
| [18] | SONG Shuang, CHAUDHURI K, and SARWATE A D. Stochastic gradient descent with differentially private updates[C]. Global Conference on Signal & Information Processing, Austin, USA, 2014: 245–248. doi:  10.1109/globalsip.2013.6736861. | 
| [19] | LIU Haojie, MA Shun, XIA Daoxun,  et al. SFANet: A spectrum-aware feature augmentation network for visible-infrared person reidentification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 1958–1971. doi:  10.1109/tnnls.2021.3105702. | 
| [20] | YE Mang, SHEN Jianbing, LIN Gaojie,  et al. Deep learning for person Re-identification: A survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872–2893. doi:  10.1109/TPAMI.2021.3054775. | 
| [21] | HUANG Zhipeng, LIU Jiawei, LI Liang,    et al. Modality-adaptive mixup and invariant decomposition for RGB-infrared person Re-identification[C/OL]. The 36th AAAI Conference on Artificial Intelligence, 2022: 1034–1042. doi:  10.1609/aaai.v36i1.19987. | 
| [22] | CHEN Cuiqun, YE Mang, QI Meibin,  et al. Structure-aware positional transformer for visible-infrared person Re-identification[J]. IEEE Transactions on Image Processing, 2022, 31: 2352–2364. doi:  10.1109/tip.2022.3141868. | 
| [23] | ZHANG Qiang, LAI Changzhou, LIU Jianan,    et al. FMCNet: Feature-level modality compensation for visible-infrared person Re-identification[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 7339–7348. doi:  10.1109/cvpr52688.2022.00720. | 
| [24] | YE Mang, LAN Xiangyuan, and LENG Qingming. Modality-aware collaborative learning for visible thermal person Re-identification[C]. The 27th ACM International Conference on Multimedia, Nice, France, 2019: 347–355. doi:  10.1145/3343031.3351043. | 
| [25] | PARK H, LEE S, LEE J,    et al. Learning by aligning: Visible-infrared person Re-identification using cross-modal correspondences[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 12026–12035. doi:  10.1109/iccv48922.2021.01183. | 
| [26] | HAO Xin, ZHAO Sanyuan, YE Mang,    et al. Cross-modality person Re-identification via modality confusion and center aggregation[C]. The IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 16383–16392. doi:  10.1109/ICCV48922.2021.01609. | 
| [27] | SUN Hanzhe, LIU Jun, ZHANG Zhizhong,    et al. Not all pixels are matched: Dense contrastive learning for cross-modality person Re-identification[C]. The 30th ACM International Conference on Multimedia, Lisbon, Portugal, 2022: 5333–5341. doi:  10.1145/3503161.3547970. | 
