Citation: | SONG Yi, ZHANG Hanyi, SUN Feng, ZHANG Jinglin, BAI Cong. PPNet: A Precipitation Nowcasting Model Based on Pre-Prediction[J]. Journal of Electronics & Information Technology, 2024, 46(2): 492-502. doi: 10.11999/JEIT230547 |
[1] |
WANG Cunguang and HONG Yang. Application of spatiotemporal predictive learning in precipitation nowcasting[C]. AGU Fall Meeting Abstracts, Washington, USA, 2018: H31H–1988.
|
[2] |
SUN Juanzhen, XUE Ming, WILSON J W, et al. Use of NWP for nowcasting convective precipitation: Recent progress and challenges[J]. Bulletin of the American Meteorological Society, 2014, 95(3): 409–426. doi: 10.1175/BAMS-D-11-00263.1.
|
[3] |
WOO W C and WONG W K. Operational application of optical flow techniques to radar-based rainfall nowcasting[J]. Atmosphere, 2017, 8(3): 48. doi: 10.3390/atmos8030048.
|
[4] |
WOO W C and WONG W K. Application of optical flow techniques to rainfall nowcasting[C]. The 27th Conference on Severe Local Storms, Madison, USA, 2014.
|
[5] |
SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015. doi: 10.1007/978-3-319-21233-3_6.
|
[6] |
VAN HOUDT G, MOSQUERA C, and NÁPOLES G. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8): 5929–5955. doi: 10.1007/s10462-020-09838-1.
|
[7] |
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
|
[8] |
RAJ N, GHARINEIAT Z, AHMED A A M, et al. Assessment and prediction of sea level trend in the South Pacific Region[J]. Remote Sensing, 2022, 14(4): 986. doi: 10.3390/rs14040986.
|
[9] |
AHMAD R, YANG B, ETTLIN G, et al. A machine‐learning based ConvLSTM architecture for NDVI forecasting[J]. International Transactions in Operational Research, 2023, 30(4): 2025–2048. doi: 10.1111/itor.12887.
|
[10] |
WANG Yunbo, GAO Zhifeng, LONG Mingsheng, et al. PredRNN++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 5110–5119. doi: 10.48550/arXiv.1804.06300.
|
[11] |
KATTENBORN T, LEITLOFF J, SCHIEFER F, et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 24–49. doi: 10.1016/j.isprsjprs.2020.12.010.
|
[12] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, German, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
|
[13] |
李原, 李燕君, 刘进超, 等. 基于改进Res-UNet网络的钢铁表面缺陷图像分割研究[J]. 电子与信息学报, 2022, 44(5): 1513–1520. doi: 10.11999/JEIT211350.
LI Yuan, LI Yanjun, LIU Jinchao, et al. Research on segmentation of steel surface defect images based on improved res-UNet network[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1513–1520. doi: 10.11999/JEIT211350.
|
[14] |
AYZEL G, SCHEFFER T, and HEISTERMANN M. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting[J]. Geoscientific Model Development, 2020, 13(6): 2631–2644. doi: 10.5194/gmd-13-2631-2020.
|
[15] |
TAYLOR G I. The spectrum of turbulence[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1938, 164(919): 476–490. doi: 10.1098/rspa.1938.0032.
|
[16] |
RUMELHART D E, HINTON G E, and WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533–536. doi: 10.1038/323533a0.
|
[17] |
WANG Yunbo, LONG Mingsheng, WANG Jianmin, et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 879–888.
|
[18] |
WANG Yunbo, ZHANG Jianjin, ZHU Hongyu, et al. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9146–9154. doi: 10.1109/CVPR.2019.00937.
|
[19] |
王同, 苏林, 任群言, 等. 基于注意力机制的全海深声速剖面预测方法[J]. 电子与信息学报, 2022, 44(2): 726–736. doi: 10.11999/JEIT210078.
WANG Tong, SU Lin, REN Qunyan, et al. Full-sea depth sound speed profiles prediction using RNN and attention mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 726–736. doi: 10.11999/JEIT210078.
|
[20] |
SUN Feng, BAI Cong, SONG Yi, et al. MMINR: Multi-frame-to-multi-frame inference with noise resistance for precipitation nowcasting with radar[C]. 2022 26th International Conference on Pattern Recognition, Montreal, Canada, 2022: 97–103. doi: 10.1109/ICPR56361.2022.9956046.
|
[21] |
HAN Lei, SUN Juanzhen, and ZHANG Wei. Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1487–1495. doi: 10.1109/ TGRS.2019.2948070.
|
[22] |
TREBING K, STAǸCZYK T, and MEHRKANOON S. SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture[J]. Pattern Recognition Letters, 2021, 145: 178–186. doi: 10.1016/j.patrec.2021.01.036.
|
[23] |
ZHANG Lei, HUANG Zhenyue, LIU Wei, et al. Weather radar echo prediction method based on convolution neural network and long short-term memory networks for sustainable e-agriculture[J]. Journal of Cleaner Production, 2021, 298: 126776. doi: 10.1016/j.jclepro.2021.126776.
|
[24] |
SHI Xingjian, GAO Zhihan, LAUSEN L, et al. Deep learning for precipitation nowcasting: A benchmark and a new model[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017.
|