| Citation: | SONG Yi, ZHANG Hanyi, SUN Feng, ZHANG Jinglin, BAI Cong. PPNet: A Precipitation Nowcasting Model Based on Pre-Prediction[J]. Journal of Electronics & Information Technology, 2024, 46(2): 492-502. doi: 10.11999/JEIT230547 | 
 
	                | [1] | WANG Cunguang and HONG Yang. Application of spatiotemporal predictive learning in precipitation nowcasting[C]. AGU Fall Meeting Abstracts, Washington, USA, 2018: H31H–1988. | 
| [2] | SUN Juanzhen, XUE Ming, WILSON J W,  et al. Use of NWP for nowcasting convective precipitation: Recent progress and challenges[J]. Bulletin of the American Meteorological Society, 2014, 95(3): 409–426. doi:  10.1175/BAMS-D-11-00263.1. | 
| [3] | WOO W C and WONG W K. Operational application of optical flow techniques to radar-based rainfall nowcasting[J]. Atmosphere, 2017, 8(3): 48. doi:  10.3390/atmos8030048. | 
| [4] | WOO W C and WONG W K. Application of optical flow techniques to rainfall nowcasting[C]. The 27th Conference on Severe Local Storms, Madison, USA, 2014. | 
| [5] | SHI Xingjian, CHEN Zhourong, WANG Hao,    et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015. doi:  10.1007/978-3-319-21233-3_6. | 
| [6] | VAN HOUDT G, MOSQUERA C, and NÁPOLES G. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8): 5929–5955. doi:  10.1007/s10462-020-09838-1. | 
| [7] | HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi:  10.1162/neco.1997.9.8.1735. | 
| [8] | RAJ N, GHARINEIAT Z, AHMED A A M,  et al. Assessment and prediction of sea level trend in the South Pacific Region[J]. Remote Sensing, 2022, 14(4): 986. doi:  10.3390/rs14040986. | 
| [9] | AHMAD R, YANG B, ETTLIN G,  et al. A machine‐learning based ConvLSTM architecture for NDVI forecasting[J]. International Transactions in Operational Research, 2023, 30(4): 2025–2048. doi:  10.1111/itor.12887. | 
| [10] | WANG Yunbo, GAO Zhifeng, LONG Mingsheng,    et al. PredRNN++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]. The 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 5110–5119. doi:  10.48550/arXiv.1804.06300. | 
| [11] | KATTENBORN T, LEITLOFF J, SCHIEFER F,  et al. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 24–49. doi:  10.1016/j.isprsjprs.2020.12.010. | 
| [12] | RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, German, 2015: 234–241. doi:  10.1007/978-3-319-24574-4_28. | 
| [13] | 李原, 李燕君, 刘进超, 等. 基于改进Res-UNet网络的钢铁表面缺陷图像分割研究[J]. 电子与信息学报, 2022, 44(5): 1513–1520. doi:  10.11999/JEIT211350. LI Yuan, LI Yanjun, LIU Jinchao,  et al. Research on segmentation of steel surface defect images based on improved res-UNet network[J]. Journal of Electronics & Information Technology, 2022, 44(5): 1513–1520. doi:  10.11999/JEIT211350. | 
| [14] | AYZEL G, SCHEFFER T, and HEISTERMANN M. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting[J]. Geoscientific Model Development, 2020, 13(6): 2631–2644. doi:  10.5194/gmd-13-2631-2020. | 
| [15] | TAYLOR G I. The spectrum of turbulence[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1938, 164(919): 476–490. doi:  10.1098/rspa.1938.0032. | 
| [16] | RUMELHART D E, HINTON G E, and WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533–536. doi:  10.1038/323533a0. | 
| [17] | WANG Yunbo, LONG Mingsheng, WANG Jianmin,    et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 879–888. | 
| [18] | WANG Yunbo, ZHANG Jianjin, ZHU Hongyu,    et al. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9146–9154. doi:  10.1109/CVPR.2019.00937. | 
| [19] | 王同, 苏林, 任群言, 等. 基于注意力机制的全海深声速剖面预测方法[J]. 电子与信息学报, 2022, 44(2): 726–736. doi:  10.11999/JEIT210078. WANG Tong, SU Lin, REN Qunyan,  et al. Full-sea depth sound speed profiles prediction using RNN and attention mechanism[J]. Journal of Electronics & Information Technology, 2022, 44(2): 726–736. doi:  10.11999/JEIT210078. | 
| [20] | SUN Feng, BAI Cong, SONG Yi,    et al. MMINR: Multi-frame-to-multi-frame inference with noise resistance for precipitation nowcasting with radar[C]. 2022 26th International Conference on Pattern Recognition, Montreal, Canada, 2022: 97–103. doi:  10.1109/ICPR56361.2022.9956046. | 
| [21] | HAN Lei, SUN Juanzhen, and ZHANG Wei. Convolutional neural network for convective storm nowcasting using 3-D Doppler weather radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 1487–1495. doi: 10.1109/   TGRS.2019.2948070. | 
| [22] | TREBING K, STAǸCZYK T, and MEHRKANOON S. SmaAt-UNet: Precipitation nowcasting using a small attention-UNet architecture[J]. Pattern Recognition Letters, 2021, 145: 178–186. doi:  10.1016/j.patrec.2021.01.036. | 
| [23] | ZHANG Lei, HUANG Zhenyue, LIU Wei,  et al. Weather radar echo prediction method based on convolution neural network and long short-term memory networks for sustainable e-agriculture[J]. Journal of Cleaner Production, 2021, 298: 126776. doi:  10.1016/j.jclepro.2021.126776. | 
| [24] | SHI Xingjian, GAO Zhihan, LAUSEN L,    et al. Deep learning for precipitation nowcasting: A benchmark and a new model[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017. | 
