| Citation: | SUN Yu, YAN Yu, CUI Jian, XIONG Gaojian, LIU Jianhua. Review of Deep Gradient Inversion Attacks and Defenses in Federated Learning[J]. Journal of Electronics & Information Technology, 2024, 46(2): 428-442. doi: 10.11999/JEIT230541 | 
 
	                | [1] | JORDAN M I and MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255–260. doi:  10.1126/science.aaa8415. | 
| [2] | LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi:  10.1038/nature14539. | 
| [3] | FANG Binxing. Breaking the conflict between data element flows and privacy protection[EB/OL]. http://event.chinaaet.com/huodong/cite2022/, 2022. | 
| [4] | MCMAHAN B, MOORE E, RAMAGE D,    et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282. | 
| [5] | YANG Qiang, LIU Yang, CHENG Yong,    et al. Federated Learning[M]. San Rafael: Morgan & Claypool, 2020: 1–207. | 
| [6] | YANG Qiang, LIU Yang, CHEN Tianjian,  et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 12. doi:  10.1145/3298981. | 
| [7] | LIU Yang, FAN Tao, CHEN Tianjian,  et al. FATE: An industrial grade platform for collaborative learning with data protection[J]. Journal of Machine Learning Research, 2021, 22: 1–1. | 
| [8] | 马艳军, 于佃海, 吴甜, 等. 飞桨: 源于产业实践的开源深度学习平台[J]. 数据与计算发展前沿, 2019, 1(1): 105–115. doi:  10.11871/jfdc.issn.2096.742X.2019.01.011. MA Yanjun, YU Dianhai, WU Tian,    et al. Paddlepaddle: An open-source deep learning platform from industrial practice[J]. Frontiers of Data and Computing, 2019, 1(1): 105–115. doi:  10.11871/jfdc.issn.2096.742X.2019.01.011. | 
| [9] | BONAWITZ K A, EICHNER H, GRIESKAMP W,    et al. Towards federated learning at scale: System design[C]. Machine Learning and Systems 2019, Stanford, USA, 2019: 374–388. doi:  10.48550/arXiv.1902.01046. | 
| [10] | RYFFEL T, TRASK A, DAHL M,    et al. A generic framework for privacy preserving deep learning[EB/OL]. https://arxiv.org/pdf/1811.04017v2.pdf, 2018. | 
| [11] | HAO Meng, LI Hongwei, LUO Xizhao,  et al. Efficient and privacy-enhanced federated learning for industrial artificial intelligence[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6532–6542. doi:  10.1109/TII.2019.2945367. | 
| [12] | RIEKE N, HANCOX J, LI Wenqi,  et al. The future of digital health with federated learning[J]. NPJ Digital Medicine, 2020, 3: 119. doi:  10.1038/s41746-020-00323-1. | 
| [13] | XU Jie, GLICKSBERG B S, SU Chang,  et al. Federated learning for healthcare informatics[J]. Journal of Healthcare Informatics Research, 2021, 5(1): 1–19. doi:  10.1007/s41666-020-00082-4. | 
| [14] | MILLS J, HU Jia, and MIN Geyong. Communication-efficient federated learning for wireless edge intelligence in iot[J]. IEEE Internet of Things Journal, 2020, 7(7): 5986–5994. doi:  10.1109/JIOT.2019.2956615. | 
| [15] | YANG Wensi, ZHANG Yuhang, YE Kejiang,    et al. FFD: A federated learning based method for credit card fraud detection[C]. Proceedings of the 8th International Conference on Big Data, San Diego, USA, 2019: 18–32. doi:  10.1007/978-3-030-23551-2_2. | 
| [16] | LONG Guodong, TAN Yue, JIANG Jing,    et al. Federated learning for open banking[M]. YANG Qiang, FAN Lixin, and YU Han. Federated Learning: Privacy and Incentive. Cham: Springer, 2020: 240–254. doi 10.1007/978-3-030-63076-8_17. | 
| [17] | NASR M, SHOKRI R, and HOUMANSADR A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[C]. 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 739–753. doi:  10.1109/SP.2019.00065. | 
| [18] | MELIS L, SONG Congzheng, DE CRISTOFARO E,    et al. Exploiting unintended feature leakage in collaborative learning[C]. 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 691–706. doi:  10.1109/SP.2019.00029. | 
| [19] | WANG Zhibo, SONG Mengkai, ZHANG Zhifei,    et al. Beyond inferring class representatives: User-level privacy leakage from federated learning[C]. Proceedings of 2019 IEEE Conference on Computer Communications, Paris, France, 2019: 2512–2520. doi:  10.1109/INFOCOM.2019.8737416. | 
| [20] | ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1323. doi:  10.5555/3454287.3455610. | 
| [21] | PHONG L T, AONO Y, HAYASHI T,  et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333–1345. doi:  10.1109/TIFS.2017.2787987. | 
| [22] | DONG Ye, CHEN Xiaojun, SHEN Liyan,  et al. Eastfly: Efficient and secure ternary federated learning[J]. Computers & Security, 2020, 94: 101824. doi:  10.1016/j.cose.2020.101824. | 
| [23] | ZHANG Chengliang, LI Suyi, XIA Junzhe,    et al. Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning[C/OL]. 2020 USENIX Annual Technical Conference, 2020: 493–506. | 
| [24] | ZHU Hangyu, WANG Rui, JIN Yaochu,  et al. Distributed additive encryption and quantization for privacy preserving federated deep learning[J]. Neurocomputing, 2021, 463: 309–327. doi:  10.1016/j.neucom.2021.08.062. | 
| [25] | ZHANG Jiale, CHEN Bing, YU Shui,    et al. PEFL: A privacy-enhanced federated learning scheme for big data analytics[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6. doi:  10.1109/GLOBECOM38437.2019.9014272. | 
| [26] | BONAWITZ K, IVANOV V, KREUTER B,    et al. Practical secure aggregation for privacy-preserving machine learning[C]. 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 1175–1191. doi:  10.1145/3133956.3133982. | 
| [27] | XU Guowen, LI Hongwei, LIU Sen,  et al. Verifynet: Secure and verifiable federated learning[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 911–926. doi:  10.1109/TIFS.2019.2929409. | 
| [28] | GUO Xiaojie, LIU Zheli, LI Jin,  et al. VeriFL: Communication-efficient and fast verifiable aggregation for federated learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1736–1751. doi:  10.1109/TIFS.2020.3043139. | 
| [29] | LUO Fucai, AL-KUWARI S, and DING Yong. SVFL: Efficient secure aggregation and verification for cross-silo federated learning[J]. IEEE Transactions on Mobile Computing, 2024, 23(1): 850–864. doi:  10.1109/TMC.2022.3219485. | 
| [30] | HAHN C, KIM H, KIM M,  et al. VerSA: Verifiable secure aggregation for cross-device federated learning[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(1): 36–52. doi:  10.1109/TDSC.2021.3126323. | 
| [31] | WANG Yijue, DENG Jieren, GUO Dan,    et al. SAPAG: A self-adaptive privacy attack from gradients[EB/OL]. https://arxiv.org/pdf/2009.06228.pdf, 2020. | 
| [32] | WEI Wenqi, LIU Ling, LOPER M,    et al. A framework for evaluating gradient leakage attacks in federated learning[EB/OL]. https://arxiv.org/pdf/2004.10397v2.pdf, 2020. | 
| [33] | GEIPING Jonas, BAUERMEISTER H, DRÖGE H,    et al. Inverting gradients - how easy is it to break privacy in federated learning?[C]. The 34th Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 16937–16947. doi:  10.48550/arXiv.2003.14053. | 
| [34] | YIN Hongxu, MALLYA A, VAHDAT A,    et al. See through gradients: Image batch recovery via gradinversion[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 16332–16341. doi:  10.1109/CVPR46437.2021.01607. | 
| [35] | HATAMIZADEH A, YIN Hongxu, ROTH H,    et al. GradViT: Gradient inversion of vision transformers[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10011–10020. doi:  10.1109/CVPR52688.2022.00978. | 
| [36] | JEON J, KIM J, LEE K,    et al. Gradient inversion with generative image prior[C/OL]. The 35th Conference on Neural Information Processing Systems, 2021: 29898–29908. | 
| [37] | LI Zhuohang, ZHANG Jiaxin, LIU Luyang,    et al. Auditing privacy defenses in federated learning via generative gradient leakage[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10122–10132. doi:  10.1109/CVPR52688.2022.00989. | 
| [38] | HUANG Yangsibo, GUPTA S, SONG Zhao,    et al. Evaluating gradient inversion attacks and defenses in federated learning[C/OL]. The 35th Conference on Neural Information Processing Systems, 2021: 7232–7241. | 
| [39] | YANG Haomiao, GE Mengyu, XIANG Kunlan,  et al. Using highly compressed gradients in federated learning for data reconstruction attacks[J]. IEEE Transactions on Information Forensics and Security, 2022, 18: 818–830. doi:  10.1109/TIFS.2022.3227761. | 
| [40] | SUN Jingwei, LI Ang, WANG Binghui,    et al. Soteria: Provable defense against privacy leakage in federated learning from representation perspective[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9307–9315. doi:  10.1109/CVPR46437.2021.00919. | 
| [41] | DENG Jieren, WANG Yijue, LI Ji,    et al. TAG: Gradient attack on transformer-based language models[C]. Findings of the Association for Computational Linguistics, Punta Cana, Dominican Republic, 2021: 3600–3610. doi:  10.18653/v1/2021.findings-emnlp.305. | 
| [42] | BALUNOVIĆ M, DIMITROV D I, JOVANOVIĆ N,    et al. LAMP: Extracting text from gradients with language model priors[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 7641–7654. doi:  10.48550/arXiv.2202.08827. | 
| [43] | LI Zhuohang, ZHANG Jiaxin, and LIU Jian. Speech privacy leakage from shared gradients in distributed learning[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi:  10.1109/ICASSP49357.2023.10095443. | 
| [44] | VERO M, BALUNOVIĆ M, DIMITROV D I,    et al. TabLeak: Tabular data leakage in federated learning[C]. The 40th International Conference on Machine Learning, Hawaii, USA, 2023: 1460. doi:  10.5555/3618408.3619868. | 
| [45] | ZHU Junyi and BLASCHKO M B. R-Gap: Recursive gradient attack on privacy[C/OL]. The 9th International Conference on Learning Representations, 2021: 1–17. | 
| [46] | CHEN Cangxiong and CAMPBELL N D F. Understanding training-data leakage from gradients in neural networks for image classification[EB/OL]. https://arxiv.org/pdf/2111.10178.pdf, 2021. | 
| [47] | KARIYAPPA S, GUO Chuan, MAENG K,    et al. Cocktail party attack: Breaking aggregation-based privacy in federated learning using independent component analysis[C]. The 40th International Conference on Machine Learning, Honolulu, USA, 2023: 651. | 
| [48] | GUPTA S, HUANG Yangsibo, ZHONG Zexuan,    et al. Recovering private text in federated learning of language models[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 8130–8143. | 
| [49] | LAM M, WEI G Y, BROOKS D,    et al. Gradient disaggregation: Breaking privacy in federated learning by reconstructing the user participant matrix[C/OL]. The 38th International Conference on Machine Learning, 2021: 5959–5968. | 
| [50] | BOENISCH F, DZIEDZIC A, SCHUSTER R,    et al. When the curious abandon honesty: Federated learning is not private[C]. The 2023 IEEE 8th European Symposium on Security and Privacy, Delft, Netherlands, 2021: 175–199,doi:  10.1109/EuroSP57164.2023.00020. | 
| [51] | WEN Yuxin, GEIPING J A, FOWL L,    et al. Fishing for user data in large-batch federated learning via gradient magnification[C]. The 39th International Conference on Machine Learning, Baltimore, USA, 2022: 23668–23684. doi:  10.48550/arXiv.2202.00580. | 
| [52] | PASQUINI D, FRANCATI D, and ATENIESE G. Eluding secure aggregation in federated learning via model inconsistency[C]. 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 2429–2443. doi:  10.1145/3548606.3560557. | 
| [53] | FOWL L, GEIPING J, CZAJA W,    et al. Robbing the fed: Directly obtaining private data in federated learning with modified models[C/OL]. The 10th International Conference on Learning Representations, 2021: 1–25. doi:  10.48550/arXiv.2110.13057. | 
| [54] | ZHAO J C, ELKORDY A R, SHARMA A,    et al. The resource problem of using linear layer leakage attack in federated learning[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 3974–3983. doi:  10.1109/CVPR52729.2023.00387. | 
| [55] | PAN Xudong, ZHANG Mi, YAN Yifan,    et al. Exploring the security boundary of data reconstruction via neuron exclusivity analysis[C]. The 31st USENIX Security Symposium, Boston, USA, 2020: 3989–4006. doi:  10.48550/arXiv.2010.13356. | 
| [56] | FOWL L H, GEIPING J, REICH S,    et al. Decepticons: Corrupted transformers breach privacy in federated learning for language models[C]. The 11th International Conference on Learning Representations, Kigali, Rwanda, 2022: 1–23. doi:  10.48550/arXiv.2201.12675. | 
| [57] | ZHAO Bo, MOPURI K R, and BILEN H. iDLG: Improved deep leakage from gradients[EB/OL]. https://arxiv.org/pdf/2001.02610.pdf, 2020. | 
| [58] | DANG T, THAKKAR O, RAMASWAMY S,    et al. Revealing and protecting labels in distributed training[C]. The 35th Conference on Neural Information Processing Systems, Sydney, Australia, 2021: 1727–1738. doi:  10.48550/arXiv.2111.00556. | 
| [59] | MA Kailang, SUN Yu, CUI Jian,    et al. Instance-wise batch label restoration via gradients in federated learning[C]. The 11th International Conference on Learning Representations, Kigali, Rwanda, 2023: 1–15. | 
| [60] | ABADI M, CHU A, GOODFELLOW I,    et al. Deep learning with differential privacy[C]. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 308–318. doi:  10.1145/2976749.2978318. | 
| [61] | WEI Wenqi, LIU Ling, WU Yanzhao,    et al. Gradient-leakage resilient federated learning[C]. The 2021 IEEE 41st International Conference on Distributed Computing Systems, Washington, USA, 2021: 797–807. doi:  10.1109/ICDCS51616.2021.00081. | 
| [62] | WEI Wenqi and LIU Ling. Gradient leakage attack resilient deep learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 17: 303–316. doi:  10.1109/TIFS.2021.3139777. | 
| [63] | WANG Junxiao, GUO Song, XIE Xin,    et al. Protect privacy from gradient leakage attack in federated learning[C]. 2022 IEEE Conference on Computer Communications, London, UK, 2022: 580–589. doi:  10.1109/INFOCOM48880.2022.9796841. | 
| [64] | HUANG Yangsibo, SONG Zhao, LI Kai,    et al. InstaHide: Instance-hiding schemes for private distributed learning[C/OL]. The 37th International Conference on Machine Learning, 2020: 419. doi:  10.5555/3524938.3525357. | 
| [65] | GAO Wei, GUO Shangwei, ZHANG Tianwei,    et al. Privacy-preserving collaborative learning with automatic transformation search[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 114–123. doi:  10.1109/CVPR46437.2021.00018. | 
| [66] | MELLOR J, TURNER J, STORKEY A,    et al. Neural architecture search without training[C/OL]. The 38th International Conference on Machine Learning, 2021: 7588–7598. | 
| [67] | CUBUK E D, ZOPH B, MANÉ D,    et al. Autoaugment: Learning augmentation strategies from data[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 113–123. doi:  10.1109/CVPR.2019.00020. | 
| [68] | HUANG Yangsibo, SONG Zhao, CHEN Danqi,    et al. TextHide: Tackling data privacy in language understanding tasks[C/OL]. Findings of the Association for Computational Linguistics, 2020: 1368–1382. doi:  10.18653/v1/2020.findings-emnlp.123. | 
| [69] | SCHELIGA D, MÄDER P, and SEELAND M. PRECODE - a generic model extension to prevent deep gradient leakage[C]. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2022: 3605–3614. doi:  10.1109/WACV51458.2022.00366. | 
| [70] | BALUNOVIĆ M, DIMITROV D I, STAAB R,    et al. Bayesian framework for gradient leakage[C/OL]. The 10th International Conference on Learning Representations, 2021: 1–16. doi:  10.48550/arXiv.2111.04706. | 
| [71] | CARLINI N, DENG S, GARG S,    et al. Is private learning possible with instance encoding?[C]. Proceedings of 2021 IEEE Symposium on Security and Privacy, San Francisco, USA, 2021: 410–427. doi:  10.1109/SP40001.2021.00099. | 
