Citation: | SUN Yu, YAN Yu, CUI Jian, XIONG Gaojian, LIU Jianhua. Review of Deep Gradient Inversion Attacks and Defenses in Federated Learning[J]. Journal of Electronics & Information Technology, 2024, 46(2): 428-442. doi: 10.11999/JEIT230541 |
[1] |
JORDAN M I and MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255–260. doi: 10.1126/science.aaa8415.
|
[2] |
LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539.
|
[3] |
FANG Binxing. Breaking the conflict between data element flows and privacy protection[EB/OL]. http://event.chinaaet.com/huodong/cite2022/, 2022.
|
[4] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. The 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[5] |
YANG Qiang, LIU Yang, CHENG Yong, et al. Federated Learning[M]. San Rafael: Morgan & Claypool, 2020: 1–207.
|
[6] |
YANG Qiang, LIU Yang, CHEN Tianjian, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 12. doi: 10.1145/3298981.
|
[7] |
LIU Yang, FAN Tao, CHEN Tianjian, et al. FATE: An industrial grade platform for collaborative learning with data protection[J]. Journal of Machine Learning Research, 2021, 22: 1–1.
|
[8] |
马艳军, 于佃海, 吴甜, 等. 飞桨: 源于产业实践的开源深度学习平台[J]. 数据与计算发展前沿, 2019, 1(1): 105–115. doi: 10.11871/jfdc.issn.2096.742X.2019.01.011.
MA Yanjun, YU Dianhai, WU Tian, et al. Paddlepaddle: An open-source deep learning platform from industrial practice[J]. Frontiers of Data and Computing, 2019, 1(1): 105–115. doi: 10.11871/jfdc.issn.2096.742X.2019.01.011.
|
[9] |
BONAWITZ K A, EICHNER H, GRIESKAMP W, et al. Towards federated learning at scale: System design[C]. Machine Learning and Systems 2019, Stanford, USA, 2019: 374–388. doi: 10.48550/arXiv.1902.01046.
|
[10] |
RYFFEL T, TRASK A, DAHL M, et al. A generic framework for privacy preserving deep learning[EB/OL]. https://arxiv.org/pdf/1811.04017v2.pdf, 2018.
|
[11] |
HAO Meng, LI Hongwei, LUO Xizhao, et al. Efficient and privacy-enhanced federated learning for industrial artificial intelligence[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6532–6542. doi: 10.1109/TII.2019.2945367.
|
[12] |
RIEKE N, HANCOX J, LI Wenqi, et al. The future of digital health with federated learning[J]. NPJ Digital Medicine, 2020, 3: 119. doi: 10.1038/s41746-020-00323-1.
|
[13] |
XU Jie, GLICKSBERG B S, SU Chang, et al. Federated learning for healthcare informatics[J]. Journal of Healthcare Informatics Research, 2021, 5(1): 1–19. doi: 10.1007/s41666-020-00082-4.
|
[14] |
MILLS J, HU Jia, and MIN Geyong. Communication-efficient federated learning for wireless edge intelligence in iot[J]. IEEE Internet of Things Journal, 2020, 7(7): 5986–5994. doi: 10.1109/JIOT.2019.2956615.
|
[15] |
YANG Wensi, ZHANG Yuhang, YE Kejiang, et al. FFD: A federated learning based method for credit card fraud detection[C]. Proceedings of the 8th International Conference on Big Data, San Diego, USA, 2019: 18–32. doi: 10.1007/978-3-030-23551-2_2.
|
[16] |
LONG Guodong, TAN Yue, JIANG Jing, et al. Federated learning for open banking[M]. YANG Qiang, FAN Lixin, and YU Han. Federated Learning: Privacy and Incentive. Cham: Springer, 2020: 240–254. doi 10.1007/978-3-030-63076-8_17.
|
[17] |
NASR M, SHOKRI R, and HOUMANSADR A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning[C]. 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 739–753. doi: 10.1109/SP.2019.00065.
|
[18] |
MELIS L, SONG Congzheng, DE CRISTOFARO E, et al. Exploiting unintended feature leakage in collaborative learning[C]. 2019 IEEE Symposium on Security and Privacy, San Francisco, USA, 2019: 691–706. doi: 10.1109/SP.2019.00029.
|
[19] |
WANG Zhibo, SONG Mengkai, ZHANG Zhifei, et al. Beyond inferring class representatives: User-level privacy leakage from federated learning[C]. Proceedings of 2019 IEEE Conference on Computer Communications, Paris, France, 2019: 2512–2520. doi: 10.1109/INFOCOM.2019.8737416.
|
[20] |
ZHU Ligeng, LIU Zhijian, and HAN Song. Deep leakage from gradients[C]. Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1323. doi: 10.5555/3454287.3455610.
|
[21] |
PHONG L T, AONO Y, HAYASHI T, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(5): 1333–1345. doi: 10.1109/TIFS.2017.2787987.
|
[22] |
DONG Ye, CHEN Xiaojun, SHEN Liyan, et al. Eastfly: Efficient and secure ternary federated learning[J]. Computers & Security, 2020, 94: 101824. doi: 10.1016/j.cose.2020.101824.
|
[23] |
ZHANG Chengliang, LI Suyi, XIA Junzhe, et al. Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning[C/OL]. 2020 USENIX Annual Technical Conference, 2020: 493–506.
|
[24] |
ZHU Hangyu, WANG Rui, JIN Yaochu, et al. Distributed additive encryption and quantization for privacy preserving federated deep learning[J]. Neurocomputing, 2021, 463: 309–327. doi: 10.1016/j.neucom.2021.08.062.
|
[25] |
ZHANG Jiale, CHEN Bing, YU Shui, et al. PEFL: A privacy-enhanced federated learning scheme for big data analytics[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6. doi: 10.1109/GLOBECOM38437.2019.9014272.
|
[26] |
BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]. 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, USA, 2017: 1175–1191. doi: 10.1145/3133956.3133982.
|
[27] |
XU Guowen, LI Hongwei, LIU Sen, et al. Verifynet: Secure and verifiable federated learning[J]. IEEE Transactions on Information Forensics and Security, 2019, 15: 911–926. doi: 10.1109/TIFS.2019.2929409.
|
[28] |
GUO Xiaojie, LIU Zheli, LI Jin, et al. VeriFL: Communication-efficient and fast verifiable aggregation for federated learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1736–1751. doi: 10.1109/TIFS.2020.3043139.
|
[29] |
LUO Fucai, AL-KUWARI S, and DING Yong. SVFL: Efficient secure aggregation and verification for cross-silo federated learning[J]. IEEE Transactions on Mobile Computing, 2024, 23(1): 850–864. doi: 10.1109/TMC.2022.3219485.
|
[30] |
HAHN C, KIM H, KIM M, et al. VerSA: Verifiable secure aggregation for cross-device federated learning[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(1): 36–52. doi: 10.1109/TDSC.2021.3126323.
|
[31] |
WANG Yijue, DENG Jieren, GUO Dan, et al. SAPAG: A self-adaptive privacy attack from gradients[EB/OL]. https://arxiv.org/pdf/2009.06228.pdf, 2020.
|
[32] |
WEI Wenqi, LIU Ling, LOPER M, et al. A framework for evaluating gradient leakage attacks in federated learning[EB/OL]. https://arxiv.org/pdf/2004.10397v2.pdf, 2020.
|
[33] |
GEIPING Jonas, BAUERMEISTER H, DRÖGE H, et al. Inverting gradients - how easy is it to break privacy in federated learning?[C]. The 34th Conference on Neural Information Processing Systems, Vancouver, Canada, 2020: 16937–16947. doi: 10.48550/arXiv.2003.14053.
|
[34] |
YIN Hongxu, MALLYA A, VAHDAT A, et al. See through gradients: Image batch recovery via gradinversion[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 16332–16341. doi: 10.1109/CVPR46437.2021.01607.
|
[35] |
HATAMIZADEH A, YIN Hongxu, ROTH H, et al. GradViT: Gradient inversion of vision transformers[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10011–10020. doi: 10.1109/CVPR52688.2022.00978.
|
[36] |
JEON J, KIM J, LEE K, et al. Gradient inversion with generative image prior[C/OL]. The 35th Conference on Neural Information Processing Systems, 2021: 29898–29908.
|
[37] |
LI Zhuohang, ZHANG Jiaxin, LIU Luyang, et al. Auditing privacy defenses in federated learning via generative gradient leakage[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 10122–10132. doi: 10.1109/CVPR52688.2022.00989.
|
[38] |
HUANG Yangsibo, GUPTA S, SONG Zhao, et al. Evaluating gradient inversion attacks and defenses in federated learning[C/OL]. The 35th Conference on Neural Information Processing Systems, 2021: 7232–7241.
|
[39] |
YANG Haomiao, GE Mengyu, XIANG Kunlan, et al. Using highly compressed gradients in federated learning for data reconstruction attacks[J]. IEEE Transactions on Information Forensics and Security, 2022, 18: 818–830. doi: 10.1109/TIFS.2022.3227761.
|
[40] |
SUN Jingwei, LI Ang, WANG Binghui, et al. Soteria: Provable defense against privacy leakage in federated learning from representation perspective[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 9307–9315. doi: 10.1109/CVPR46437.2021.00919.
|
[41] |
DENG Jieren, WANG Yijue, LI Ji, et al. TAG: Gradient attack on transformer-based language models[C]. Findings of the Association for Computational Linguistics, Punta Cana, Dominican Republic, 2021: 3600–3610. doi: 10.18653/v1/2021.findings-emnlp.305.
|
[42] |
BALUNOVIĆ M, DIMITROV D I, JOVANOVIĆ N, et al. LAMP: Extracting text from gradients with language model priors[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 7641–7654. doi: 10.48550/arXiv.2202.08827.
|
[43] |
LI Zhuohang, ZHANG Jiaxin, and LIU Jian. Speech privacy leakage from shared gradients in distributed learning[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10095443.
|
[44] |
VERO M, BALUNOVIĆ M, DIMITROV D I, et al. TabLeak: Tabular data leakage in federated learning[C]. The 40th International Conference on Machine Learning, Hawaii, USA, 2023: 1460. doi: 10.5555/3618408.3619868.
|
[45] |
ZHU Junyi and BLASCHKO M B. R-Gap: Recursive gradient attack on privacy[C/OL]. The 9th International Conference on Learning Representations, 2021: 1–17.
|
[46] |
CHEN Cangxiong and CAMPBELL N D F. Understanding training-data leakage from gradients in neural networks for image classification[EB/OL]. https://arxiv.org/pdf/2111.10178.pdf, 2021.
|
[47] |
KARIYAPPA S, GUO Chuan, MAENG K, et al. Cocktail party attack: Breaking aggregation-based privacy in federated learning using independent component analysis[C]. The 40th International Conference on Machine Learning, Honolulu, USA, 2023: 651.
|
[48] |
GUPTA S, HUANG Yangsibo, ZHONG Zexuan, et al. Recovering private text in federated learning of language models[C]. The 36th Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 8130–8143.
|
[49] |
LAM M, WEI G Y, BROOKS D, et al. Gradient disaggregation: Breaking privacy in federated learning by reconstructing the user participant matrix[C/OL]. The 38th International Conference on Machine Learning, 2021: 5959–5968.
|
[50] |
BOENISCH F, DZIEDZIC A, SCHUSTER R, et al. When the curious abandon honesty: Federated learning is not private[C]. The 2023 IEEE 8th European Symposium on Security and Privacy, Delft, Netherlands, 2021: 175–199,doi: 10.1109/EuroSP57164.2023.00020.
|
[51] |
WEN Yuxin, GEIPING J A, FOWL L, et al. Fishing for user data in large-batch federated learning via gradient magnification[C]. The 39th International Conference on Machine Learning, Baltimore, USA, 2022: 23668–23684. doi: 10.48550/arXiv.2202.00580.
|
[52] |
PASQUINI D, FRANCATI D, and ATENIESE G. Eluding secure aggregation in federated learning via model inconsistency[C]. 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, USA, 2022: 2429–2443. doi: 10.1145/3548606.3560557.
|
[53] |
FOWL L, GEIPING J, CZAJA W, et al. Robbing the fed: Directly obtaining private data in federated learning with modified models[C/OL]. The 10th International Conference on Learning Representations, 2021: 1–25. doi: 10.48550/arXiv.2110.13057.
|
[54] |
ZHAO J C, ELKORDY A R, SHARMA A, et al. The resource problem of using linear layer leakage attack in federated learning[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 3974–3983. doi: 10.1109/CVPR52729.2023.00387.
|
[55] |
PAN Xudong, ZHANG Mi, YAN Yifan, et al. Exploring the security boundary of data reconstruction via neuron exclusivity analysis[C]. The 31st USENIX Security Symposium, Boston, USA, 2020: 3989–4006. doi: 10.48550/arXiv.2010.13356.
|
[56] |
FOWL L H, GEIPING J, REICH S, et al. Decepticons: Corrupted transformers breach privacy in federated learning for language models[C]. The 11th International Conference on Learning Representations, Kigali, Rwanda, 2022: 1–23. doi: 10.48550/arXiv.2201.12675.
|
[57] |
ZHAO Bo, MOPURI K R, and BILEN H. iDLG: Improved deep leakage from gradients[EB/OL]. https://arxiv.org/pdf/2001.02610.pdf, 2020.
|
[58] |
DANG T, THAKKAR O, RAMASWAMY S, et al. Revealing and protecting labels in distributed training[C]. The 35th Conference on Neural Information Processing Systems, Sydney, Australia, 2021: 1727–1738. doi: 10.48550/arXiv.2111.00556.
|
[59] |
MA Kailang, SUN Yu, CUI Jian, et al. Instance-wise batch label restoration via gradients in federated learning[C]. The 11th International Conference on Learning Representations, Kigali, Rwanda, 2023: 1–15.
|
[60] |
ABADI M, CHU A, GOODFELLOW I, et al. Deep learning with differential privacy[C]. 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 2016: 308–318. doi: 10.1145/2976749.2978318.
|
[61] |
WEI Wenqi, LIU Ling, WU Yanzhao, et al. Gradient-leakage resilient federated learning[C]. The 2021 IEEE 41st International Conference on Distributed Computing Systems, Washington, USA, 2021: 797–807. doi: 10.1109/ICDCS51616.2021.00081.
|
[62] |
WEI Wenqi and LIU Ling. Gradient leakage attack resilient deep learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 17: 303–316. doi: 10.1109/TIFS.2021.3139777.
|
[63] |
WANG Junxiao, GUO Song, XIE Xin, et al. Protect privacy from gradient leakage attack in federated learning[C]. 2022 IEEE Conference on Computer Communications, London, UK, 2022: 580–589. doi: 10.1109/INFOCOM48880.2022.9796841.
|
[64] |
HUANG Yangsibo, SONG Zhao, LI Kai, et al. InstaHide: Instance-hiding schemes for private distributed learning[C/OL]. The 37th International Conference on Machine Learning, 2020: 419. doi: 10.5555/3524938.3525357.
|
[65] |
GAO Wei, GUO Shangwei, ZHANG Tianwei, et al. Privacy-preserving collaborative learning with automatic transformation search[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 114–123. doi: 10.1109/CVPR46437.2021.00018.
|
[66] |
MELLOR J, TURNER J, STORKEY A, et al. Neural architecture search without training[C/OL]. The 38th International Conference on Machine Learning, 2021: 7588–7598.
|
[67] |
CUBUK E D, ZOPH B, MANÉ D, et al. Autoaugment: Learning augmentation strategies from data[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 113–123. doi: 10.1109/CVPR.2019.00020.
|
[68] |
HUANG Yangsibo, SONG Zhao, CHEN Danqi, et al. TextHide: Tackling data privacy in language understanding tasks[C/OL]. Findings of the Association for Computational Linguistics, 2020: 1368–1382. doi: 10.18653/v1/2020.findings-emnlp.123.
|
[69] |
SCHELIGA D, MÄDER P, and SEELAND M. PRECODE - a generic model extension to prevent deep gradient leakage[C]. 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2022: 3605–3614. doi: 10.1109/WACV51458.2022.00366.
|
[70] |
BALUNOVIĆ M, DIMITROV D I, STAAB R, et al. Bayesian framework for gradient leakage[C/OL]. The 10th International Conference on Learning Representations, 2021: 1–16. doi: 10.48550/arXiv.2111.04706.
|
[71] |
CARLINI N, DENG S, GARG S, et al. Is private learning possible with instance encoding?[C]. Proceedings of 2021 IEEE Symposium on Security and Privacy, San Francisco, USA, 2021: 410–427. doi: 10.1109/SP40001.2021.00099.
|