Advanced Search
Volume 46 Issue 5
May  2024
Turn off MathJax
Article Contents
BIAN Song, MAO Ran, ZHU Yongqing, FU Yunhao, ZHANG Zhou, DING Lin, ZHANG Jiliang, ZHANG Bo, CHEN Yi, DONG Jin, GUAN Zhenyu. A Survey on Software-hardware Acceleration for Fully Homomorphic Encryption[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1790-1805. doi: 10.11999/JEIT230448
Citation: BIAN Song, MAO Ran, ZHU Yongqing, FU Yunhao, ZHANG Zhou, DING Lin, ZHANG Jiliang, ZHANG Bo, CHEN Yi, DONG Jin, GUAN Zhenyu. A Survey on Software-hardware Acceleration for Fully Homomorphic Encryption[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1790-1805. doi: 10.11999/JEIT230448

A Survey on Software-hardware Acceleration for Fully Homomorphic Encryption

doi: 10.11999/JEIT230448
Funds:  The National Key R&D Program of China (2023YFB3106200), The National Natural Science Foundation of China (62002006, 62172025, U21B2021, 61932011, 61932014, 61972018, 61972019, 62202028, U2241213), The Defense Industrial Technology Development Program (JCKY2021211B017)
  • Received Date: 2023-05-18
  • Rev Recd Date: 2023-12-13
  • Available Online: 2023-12-22
  • Publish Date: 2024-05-30
  • Fully Homomorphic Encryption (FHE) is a multi-party secure computation protocol characterized by its high computational complexity and low interaction requirements. Although there is no need for multiple rounds of interactions and extensive communications between computing participants in protocols based on FHE, the processing time of encrypted data is typically $ {10}^{3} $ to $ {10}^{6} $ times of that of plaintext computing, and thus significantly hinders the practical deployment of such protocols. In particular, the large-scale darallel cryptographic operations and the cost of data movement for the ciphertext and key data needed in the operations become the dominating performance bottlenecks. The topic of accelerating FHE in both the software and the hardware layers is discussed in this paper. By systematically categorizing and organizing existing literatures, a survey on the current status and outlook of the research on FHE is presented.
  • loading
  • [1]
    GOLDREICH O, MICALI S, and WIGDERSON A. How to play any mental game[C]. The Nineteenth Annual ACM Symposium on Theory of Computing, New York, USA, 1987: 218–229. doi: 10.1145/28395.28420.
    [2]
    YAO A C C. How to generate and exchange secrets[C]. The 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 1986: 162–167. doi: 10.1109/SFCS.1986.25.
    [3]
    GENTRY C. Fully homomorphic encryption using ideal lattices[C]. The Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, USA, 2009: 169–178. doi: 10.1145/1536414.1536440.
    [4]
    HUANG Zhicong, LU Wenjie, HONG Cheng, et al. Cheetah: Lean and fast secure two-party deep neural network inference[C]. The 31st USENIX Security Symposium, Boston, USA, 2022: 809–826.
    [5]
    LU Wenjie, HUANG Zhicong, HONG Cheng, et al. PEGASUS: Bridging polynomial and non-polynomial evaluations in homomorphic encryption[C]. 2021 IEEE Symposium on Security and Privacy, San Francisco, USA, 2021: 1057–1073. doi: 10.1109/SP40001.2021.00043.
    [6]
    韦韬, 潘无穷, 李婷婷, 等. 可信隐私计算: 破解数据密态时代“技术困局”[J]. 信息通信技术与政策, 2022, 48(5): 15–24. doi: 10.12267/j.issn.2096-5931.2022.05.003.

    WEI Tao, PAN Wuqiong, LI Tingting, et al. Trusted-environment-based privacy preserving computing: Breaks the bottleneck of ciphertext-exchange era[J]. Information and Communications Technology and Policy, 2022, 48(5): 15–24. doi: 10.12267/j.issn.2096-5931.2022.05.003.
    [7]
    FAN Junfeng and VERCAUTEREN F. Somewhat practical fully homomorphic encryption[R]. Cryptology ePrint Archive 2012/144, 2012.
    [8]
    BRAKERSKI Z, GENTRY C, and VAIKUNTANATHAN V. (Leveled) fully homomorphic encryption without bootstrapping[J]. ACM Transactions on Computation Theory, 2014, 6(3): 13. doi: 10.1145/2633600.
    [9]
    CHEON J H, KIM A, KIM M, et al. Homomorphic encryption for arithmetic of approximate numbers[C]. The 23rd International Conference on the Theory and Application of Cryptology and Information Security, Hong Kong, China, 2017: 409–437. doi: 10.1007/978-3-319-70694-8_15.
    [10]
    GENTRY C, SAHAI A, and WATERS B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based[C]. The 33rd Annual Cryptology Conference, Santa Barbara, USA, 2013: 75–92. doi: 10.1007/978-3-642-40041-4_5.
    [11]
    CHILLOTTI I, GAMA N, GEORGIEVA M, et al. TFHE: Fast fully homomorphic encryption over the torus[J]. Journal of Cryptology, 2020, 33(1): 34–91. doi: 10.1007/s00145-019-09319-x.
    [12]
    BRAKERSKI Z and VAIKUNTANATHAN V. Fully homomorphic encryption from ring-LWE and security for key dependent messages[C]. The 31st Annual Cryptology Conference, Santa Barbara, USA, 2011: 505–524. doi: 10.1007/978-3-642-22792-9_29.
    [13]
    COSTACHE A and SMART N P. Which ring based somewhat homomorphic encryption scheme is best?[C]. The Cryptographers' Track at the RSA Conference, San Francisco, USA, 2016: 325–340. doi: 10.1007/978-3-319-29485-8_19.
    [14]
    CHEON J H, HAN K, KIM A, et al. Bootstrapping for approximate homomorphic encryption[C]. The 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, 2018: 360–384. doi: 10.1007/978-3-319-78381-9_14.
    [15]
    ALPERIN-SHERIFF J and PEIKERT C. Faster bootstrapping with polynomial error[C]. The 34th Annual Cryptology Conference, Santa Barbara, USA, 2014: 297–314. doi: 10.1007/978-3-662-44371-2_17.
    [16]
    DUCAS L and MICCIANCIO D. FHEW: Bootstrapping homomorphic encryption in less than a second[C]. The 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 2015: 617–640. doi: 10.1007/978-3-662-46800-5_24.
    [17]
    GAMA N, IZABACHÈNE M, NGUYEN P Q, et al. Structural lattice reduction: Generalized worst-case to average-case reductions and homomorphic cryptosystems[C]. The 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, 2016: 528–558. doi: 10.1007/978-3-662-49896-5_19.
    [18]
    SMART N P and VERCAUTEREN F. Fully homomorphic SIMD operations[J]. Designs, Codes and Cryptography, 2014, 71(1): 57–81. doi: 10.1007/s10623-012-9720-4.
    [19]
    GARNER H L. The residue number system[C]. The Western Joint Computer Conference, San Francisco, USA, 1959: 146–153. doi: 10.1145/1457838.1457864.
    [20]
    HALEVI S and SHOUP V. Algorithms in HElib[C]. The 34th Annual Cryptology Conference, Santa Barbara, USA, 2014: 554–571. doi: 10.1007/978-3-662-44371-2_31.
    [21]
    HALEVI S and SHOUP V. Bootstrapping for HElib[J]. Journal of Cryptology, 2021, 34(1): 7. doi: 10.1007/s00145-020-09368-7.
    [22]
    HALEVI S and SHOUP V. Faster homomorphic linear transformations in HElib[C]. The 38th Annual International Cryptology Conference, Santa Barbara, USA, 2018: 93–120. doi: 10.1007/978-3-319-96884-1_4.
    [23]
    JUVEKAR C, VAIKUNTANATHAN V, and CHANDRAKASAN A. GAZELLE: A low latency framework for secure neural network inference[C]. The 27th USENIX Conference on Security Symposium, Baltimore, USA, 2018: 1651–1669.
    [24]
    BIAN S, KUNDI D E S, HIROZAWA K, et al. APAS: Application-specific accelerators for RLWE-based homomorphic linear transformations[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4663–4678. doi: 10.1109/TIFS.2021.3114032.
    [25]
    BOSSUAT J P, MOUCHET C, TRONCOSO-PASTORIZA J, et al. Efficient bootstrapping for approximate homomorphic encryption with non-sparse keys[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021: 587–617. doi: 10.1007/978-3-030-77870-5_21.
    [26]
    LEE Y, LEE J W, KIM Y S, et al. High-precision bootstrapping for approximate homomorphic encryption by error variance minimization[C]. The 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, 2022: 551–580. doi: 10.1007/978-3-031-06944-4_19.
    [27]
    JUTLA C S and MANOHAR N. Sine series approximation of the mod function for bootstrapping of approximate HE[C]. The 41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Trondheim, Norway, 2022: 491–520. doi: 10.1007/978-3-031-06944-4_17.
    [28]
    CHEN Hao, CHILLOTTI I, and SONG Y. Improved bootstrapping for approximate homomorphic encryption[C]. The 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, 2019: 34–54. doi: 10.1007/978-3-030-17656-3_2.
    [29]
    LEE J W, LEE E, LEE Y, et al. High-precision bootstrapping of RNS-CKKS homomorphic encryption using optimal minimax polynomial approximation and inverse sine function[C]. The 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 2021: 618–647. doi: 10.1007/978-3-030-77870-5_22.
    [30]
    RATHEE D, RATHEE M, KUMAR N, et al. CrypTFlow2: Practical 2-party secure inference[C]. The 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, 2020: 325–342. doi: 10.1145/3372297.3417274.
    [31]
    BAJARD J C, EYNARD J, HASAN M A, et al. A full RNS variant of FV like somewhat homomorphic encryption schemes[C]. The 23rd International Conference on Selected Areas in Cryptography, St. John's, Canada, 2017: 423–442. doi: 10.1007/978-3-319-69453-5_23.
    [32]
    CHEON J H, HAN K, KIM A, et al. A full RNS variant of approximate homomorphic encryption[C]. The 25th International Conference on Selected Areas in Cryptography, Calgary, Canada, 2019: 347–368. doi: 10.1007/978-3-030-10970-7_16.
    [33]
    HALEVI S, POLYAKOV Y, and SHOUP V. An improved RNS variant of the BFV homomorphic encryption scheme[C]. The Cryptographers’ Track at the RSA Conference, San Francisco, USA, 2019: 83–105. doi: 10.1007/978-3-030-12612-4_5.
    [34]
    GENTRY C, HALEVI S, and SMART N P. Homomorphic evaluation of the AES circuit[C]. The 32nd Annual Cryptology Conference, Santa Barbara, USA, 2012: 850–867. doi: 10.1007/978-3-642-32009-5_49.
    [35]
    CHEON J H, HAN K, KIM A, et al. A full RNS variant of approximate homomorphic encryption[C]. The 25th International Conference on Selected Areas in Cryptography, Calgary, Canada, 2019: 347–368. doi: 10.1007/978-3-030-10970-7_16.
    [36]
    HAN K and KI D. Better bootstrapping for approximate homomorphic encryption[C]. The Cryptographers’ Track at the RSA Conference 2020, San Francisco, USA, 2020: 364–390. doi: 10.1007/978-3-030-40186-3_16.
    [37]
    KIM A, PAPADIMITRIOU A, and POLYAKOV Y. Approximate homomorphic encryption with reduced approximation error[R]. Cryptology ePrint Archive 2022/1118, 2022: 120–144.
    [38]
    MICCIANCIO D and POLYAKOV Y. Bootstrapping in FHEW-like cryptosystems[C]. The 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Seoul, South Korea, 2021: 17–28. doi: 10.1145/3474366.3486924.
    [39]
    BONNORON G, DUCAS L, and FILLINGER M. Large FHE gates from tensored homomorphic accumulator[C]. The 10th International Conference on Cryptology in Africa, Marrakesh, Morocco, 2018: 217–251. doi: 10.1007/978-3-319-89339-6_13.
    [40]
    LEE Y, MICCIANCIO D, KIM A, et al. Efficient FHEW bootstrapping with small evaluation keys, and applications to threshold homomorphic encryption[R]. Cryptology ePrint Archive 2022/198, 2022.
    [41]
    MICCIANCIO D and SORRELL J. Ring packing and amortized FHEW bootstrapping[R]. Cryptology ePrint Archive 2018/532, 2018.
    [42]
    GUIMARÃES A, PEREIRA H V L, and VAN LEEUWEN B. Amortized bootstrapping revisited: Simpler, asymptotically-faster, implemented[J]. Cryptology ePrint Archive 2023/014, 2023.
    [43]
    LIU Fenghao and WANG Han. Batch bootstrapping I: A new framework for SIMD bootstrapping in polynomial modulus[C]. The 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, 2023: 321–352. doi: 10.1007/978-3-031-30620-4_11.
    [44]
    BOURA C, GAMA N, GEORGIEVA M, et al. Simulating homomorphic evaluation of deep learning predictions[C]. The 3rd International Symposium on Cyber Security Cryptography and Machine Learning, Beer-Sheva, Israel, 2019: 212–230. doi: 10.1007/978-3-030-20951-3_20.
    [45]
    CHILLOTTI I, JOYE M, and PAILLIER P. Programmable bootstrapping enables efficient homomorphic inference of deep neural networks[C]. The 5th International Symposium on Cyber Security Cryptography and Machine Learning, Be’er Sheva, Israel, 2021: 1–19. doi: 10.1007/978-3-030-78086-9_1.
    [46]
    CLET P E, ZUBER M, BOUDGUIGA A, et al. Putting up the swiss army knife of homomorphic calculations by means of TFHE functional bootstrapping[R]. Cryptology ePrint Archive 2022/149, 2022.
    [47]
    KLUCZNIAK K and SCHILD L. FDFB: Full domain functional bootstrapping towards practical fully homomorphic encryption[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2022, 2023(1): 501–537. doi: 10.46586/tches.v2023.i1.501-537.
    [48]
    YANG Zhaomin, XIE Xiang, SHEN Huajie, et al. TOTA: Fully homomorphic encryption with smaller parameters and stronger security[R]. Cryptology ePrint Archive, 2021/1347, 2021.
    [49]
    CARPOV S, GAMA N, GEORGIEVA M, et al. Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption[J]. BMC Medical Genomics, 2020, 13(7): 88. doi: 10.1186/s12920-020-0723-0.
    [50]
    GUIMARÃES A, BORIN E, and ARANHA D F. Revisiting the functional bootstrap in TFHE[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021, 2021(2): 229–253. doi: 10.46586/tches.v2021.i2.229-253.
    [51]
    CHILLOTTI I, LIGIER D, ORFILA J B, et al. Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE[C]. The 27th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, 2021: 670–699. doi: 10.1007/978-3-030-92078-4_23.
    [52]
    CHEN Hao, CHILLOTTI I, and SONG Y. Multi-key homomorphic encryption from TFHE[C]. The 25th International Conference on the Theory and Application of Cryptology and Information Security, Kobe, Japan, 2019: 446–472. doi: 10.1007/978-3-030-34621-8_16.
    [53]
    BOURA C, GAMA N, GEORGIEVA M, et al. CHIMERA: Combining ring-LWE-based fully homomorphic encryption schemes[J]. Journal of Mathematical Cryptology, 2020, 14(1): 316–338. doi: 10.1515/jmc-2019-0026.
    [54]
    CHEN Hao, DAI Wei, KIM M, et al. Efficient homomorphic conversion between (ring) LWE ciphertexts[C]. The 19th International Conference on Applied Cryptography and Network Security, Kamakura, Japan, 2021: 460–479. doi: 10.1007/978-3-030-78372-3_18.
    [55]
    REN Xuanle, SU Le, GU Zhen, et al. HEDA: Multi-attribute unbounded aggregation over homomorphically encrypted database[J]. Proceedings of the VLDB Endowment, 2022, 16(4): 601–614. doi: 10.14778/3574245.3574248.
    [56]
    GÖTTERT N, FELLER T, SCHNEIDER M, et al. On the design of hardware building blocks for modern lattice-based encryption schemes[C]. The 14th International Workshop on Cryptographic Hardware and Embedded Systems, Leuven, Belgium, 2012: 512–529. doi: 10.1007/978-3-642-33027-8_30.
    [57]
    PÖPPELMANN T and GÜNEYSU T. Towards efficient arithmetic for lattice-based cryptography on reconfigurable hardware[C]. The 2nd International Conference on Cryptology and Information Security in Latin America, Santiago, Chile, 2012: 139–158. doi: 10.1007/978-3-642-33481-8_8.
    [58]
    PÖPPELMANN T and GÜNEYSU T. Towards practical lattice-based public-key encryption on reconfigurable hardware[C]. The 20th International Conference on Selected Areas in Cryptography, Burnaby, Canada, 2014: 68–85. doi: 10.1007/978-3-662-43414-7_4.
    [59]
    施佺, 韩赛飞, 黄新明, 等. 面向全同态加密的有限域FFT算法FPGA设计[J]. 电子与信息学报, 2018, 40(1): 57–62. doi: 10.11999/JEIT170312.

    SHI Quan, HAN Saifei, HUANG Xinming, et al. Design of finite field FFT for fully homomorphic encryption based on FPGA[J]. Journal of Electronics & Information Technology, 2018, 40(1): 57–62. doi: 10.11999/JEIT170312.
    [60]
    RIAZI M S, LAINE K, PELTON B, et al. HEAX: An architecture for computing on encrypted data[C]. The Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 2020: 1295–1309. doi: 10.1145/3373376.3378523.
    [61]
    REAGEN B, CHOI W S, KO Y, et al. Cheetah: Optimizing and accelerating homomorphic encryption for private inference[C]. The 2021 IEEE International Symposium on High-Performance Computer Architecture, Seoul, South Korea, 2021: 26–39. doi: 10.1109/HPCA51647.2021.00013.
    [62]
    SAMARDZIC N, FELDMANN A, KRASTEV A, et al. F1: A fast and programmable accelerator for fully homomorphic encryption[C]. The 54th Annual IEEE/ACM International Symposium on Microarchitecture, Greece, 2021: 238–252. doi: 10.1145/3466752.3480070.
    [63]
    SAMARDZIC N, FELDMANN A, KRASTEV A, et al. CraterLake: A hardware accelerator for efficient unbounded computation on encrypted data[C]. The 49th Annual International Symposium on Computer Architecture, New York, USA, 2022: 173–187. doi: 10.1145/3470496.3527393.
    [64]
    KIM J, LEE G, KIM S, et al. ARK: Fully homomorphic encryption accelerator with runtime data generation and inter-operation key reuse[C]. The 2022 55th IEEE/ACM International Symposium on Microarchitecture, Chicago, USA, 2022: 1237–1254. doi: 10.1109/MICRO56248.2022.00086.
    [65]
    JUNG W, KIM S, AHN J H, et al. Over 100x faster bootstrapping in fully homomorphic encryption through memory-centric optimization with GPUs[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021, 2021(4): 114–148. doi: 10.46586/tches.v2021.i4.114-148.
    [66]
    YANG Yinghao, ZHANG Huaizhi, FAN Shengyu, et al. Poseidon: Practical homomorphic encryption accelerator[C]. 2023 IEEE International Symposium on High-Performance Computer Architecture, Montreal, Canada, 2023: 870–881. doi: 10.1109/HPCA56546.2023.10070984.
    [67]
    ZHU Yilan, WANG Xinyao, JU Lei, et al. FxHENN: FPGA-based acceleration framework for homomorphic encrypted CNN inference[C]. 2023 IEEE International Symposium on High-Performance Computer Architecture, Montreal, Canada, 2023: 896–907. doi: 10.1109/HPCA56546.2023.10071133.
    [68]
    BRUTZKUS A, GILAD-BACHRACH R, and ELISHA O. Low latency privacy preserving inference[C]. The 36th International Conference on Machine Learning, Long Beach, USA, 2019: 812–821.
    [69]
    FAN Shengyu, WANG Zhiwei, XU Weizhi, et al. TensorFHE: Achieving practical computation on encrypted data using GPGPU[C]. 2023 IEEE International Symposium on High-Performance Computer Architecture, Montreal, Canada, 2023: 922–934. doi: 10.1109/HPCA56546.2023.10071017.
    [70]
    JIANG Lei, LOU Qian, and JOSHI N. MATCHA: A fast and energy-efficient accelerator for fully homomorphic encryption over the torus[C]. The 59th ACM/IEEE Design Automation Conference, San Francisco, USA, 2022: 235–240. doi: 3489517.3530435.
    [71]
    DAI Wei. CUDA-accelerated fully homomorphic encryption library[EB/OL]. https://github.com/vernamlab/cuFHE, 2023.
    [72]
    GENER Y S, NEWTON P, TAN D, et al. An FPGA-based programmable vector engine for fast fully homomorphic encryption over the torus[EB/OL]. https://people.ece.ubc.ca/lemieux/publications/gener-spsl2021.pdf, 2021.
    [73]
    VAN BEIRENDONCK M, D'ANVERS J P, TURAN F, et al. FPT: A fixed-point accelerator for torus fully homomorphic encryption[C]. The 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, 2023: 741–755. doi: 10.1145/3576915.3623159.
    [74]
    YE Tian, KANNAN R, and PRASANNA V K. FPGA acceleration of fully homomorphic encryption over the torus[C]. 2022 IEEE High Performance Extreme Computing Conference, Waltham, USA, 2022: 1–7. doi: 10.1109/HPEC55821.2022.9926381.
    [75]
    AL BADAWI A, POLYAKOV Y, AUNG K M M, et al. Implementation and performance evaluation of RNS variants of the BFV homomorphic encryption scheme[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(2): 941–956. doi: 10.1109/TETC.2019.2902799.
    [76]
    AL BADAWI A, JIN Chao, LIN Jie, et al. Towards the AlexNet moment for homomorphic encryption: HCNN, the first homomorphic CNN on encrypted data with GPUs[J]. IEEE Transactions on Emerging Topics in Computing, 2021, 9(3): 1330–1343. doi: 10.1109/TETC.2020.3014636.
    [77]
    DAI W and SUNAR B. cuHE: A homomorphic encryption accelerator library[C]. The 2nd International Conference on Cryptography and Information Security in the Balkans, Koper, Slovenia, 2016: 169–186. doi: 10.1007/978-3-319-29172-7_11.
    [78]
    AL BADAWI A, VEERAVALLI B, MUN C F, et al. High-performance FV somewhat homomorphic encryption on GPUs: An implementation using CUDA[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018, 2018(2): 70–95. doi: 10.13154/tches.v2018.i2.70-95.
    [79]
    ÖZERK Ö, ELGEZEN C, MERT A C, et al. Efficient number theoretic transform implementation on GPU for homomorphic encryption[J]. The Journal of Supercomputing, 2022, 78(2): 2840–2872. doi: 10.1007/s11227-021-03980-5.
    [80]
    MORSHED T, AL AZIZ M, and MOHAMMED N. CPU and GPU accelerated fully homomorphic encryption[C]. 2020 IEEE International Symposium on Hardware Oriented Security and Trust, San Jose, USA, 2020: 142–153. doi: 10.1109/HOST45689.2020.9300288.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (1755) PDF downloads(397) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return