Citation: | GU Tianlong, ZHANG Qingzhi, LI Jingjing. Line Spectrum Enhancement of Underwater Acoustic Targets Based on a Time-Frequency Attention Network[J]. Journal of Electronics & Information Technology, 2024, 46(1): 92-100. doi: 10.11999/JEIT230217 |
[1] |
ALI M F, JAYAKODY D N K, CHURSIN Y A, et al. Recent advances and future directions on underwater wireless communications[J]. Archives of Computational Methods in Engineering, 2020, 27(5): 1379–1412. doi: 10.1007/s11831-019-09354-8
|
[2] |
ISLAM K Y, AHMAD I, HABIBI D, et al. A survey on energy efficiency in underwater wireless communications[J]. Journal of Network and Computer Applications, 2022, 198: 103295. doi: 10.1016/j.jnca.2021.103295
|
[3] |
LI Sichun, JIN Xin, YAO Sibing, et al. Underwater small target recognition based on convolutional neural network[C]. Global Oceans 2020: Singapore – U. S. Gulf Coast, Biloxi, USA, 2020: 1–7.
|
[4] |
JIN Guanghao, LIU Fan, WU Hao, et al. Deep learning-based framework for expansion, recognition and classification of underwater acoustic signal[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2020, 32(2): 205–218. doi: 10.1080/0952813X.2019.1647560
|
[5] |
BIANCO M J, GERSTOFT P, TRAER J, et al. Machine learning in acoustics: Theory and applications[J]. The Journal of the Acoustical Society of America, 2019, 146(5): 3590–3628. doi: 10.1121/1.5133944
|
[6] |
VIVEK V S, VIDHYA S, and MADHANMOHAN P. Acoustic scene classification in hearing aid using deep learning[C]. 2020 International Conference on Communication and Signal Processing, Chennai, India, 2020: 695–699.
|
[7] |
WANG Peibing and PENG Yuan. Research on feature extraction and recognition method of underwater acoustic target based on deep convolutional network[C]. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications, Dalian, China, 2020: 863–868.
|
[8] |
RAO S K and JAGAN B O L. Passive target tracking in underwater environment using bearing and frequency measurements[C]. OCEANS 2022-Chennai, Chennai, India, 2022: 1–4.
|
[9] |
KOGEKAR A P, NAYAK R, and PATI U C. A CNN-BiLSTM-SVR based deep hybrid model for water quality forecasting of the river Ganga[C]. 2021 IEEE 18th India Council International Conference, Guwahati, India, 2021: 1–6.
|
[10] |
朱雨男, 解方彤, 张明亮, 等. 基于多层双向长短时记忆网络的水声多载波通信索引检测方法[J]. 电子与信息学报, 2022, 44(6): 1984–1990. doi: 10.11999/JEIT210949
ZHU Yunan, XIE Fangtong, ZHANG Mingliang, et al. Index detection for underwater acoustic multi-carrier communication based on deep bidirectional long short-term memory network[J]. Journal of Electronics &Information Technology, 2022, 44(6): 1984–1990. doi: 10.11999/JEIT210949
|
[11] |
鞠东豪, 迟骋, 李宇, 等. 基于无监督深度学习的线谱增强算法[J]. 舰船科学技术, 2020, 42(23): 117–120. doi: 10.3404/j.issn.1672-7649.2020.12.023
JU Donghao, CHI Cheng, LI Yu, et al. Line enhancement algorithm based on unsupervised deep learning for passive sonars[J]. Ship Science and Technology, 2020, 42(23): 117–120. doi: 10.3404/j.issn.1672-7649.2020.12.023
|
[12] |
JU Donghao, CHI Cheng, LI Zigao, et al. Deep-learning-based line enhancer for passive sonar systems[J]. IET Radar, Sonar & Navigation, 2022, 16(3): 589–601. doi: 10.1049/rsn2.12205
|
[13] |
WIDROW B, GLOVER J R, MCCOOL J M, et al. Adaptive noise cancelling: Principles and applications[J]. Proceedings of the IEEE, 1975, 63(12): 1692–1716. doi: 10.1109/PROC.1975.10036
|
[14] |
杨路飞, 章新华, 吴秉坤. 基于长短时记忆网络的被动声纳目标信号LOFAR谱增强研究[J]. 电声技术, 2020, 44(6): 101–103. doi: 10.16311/j.audioe.2020.06.024
YANG Lufei, ZHANG Xinhua, and WU Bingkun. A study on signal LOFAR spectrum enhancement of passive sonar target based on short and short time memory network[J]. Audio Engineering, 2020, 44(6): 101–103. doi: 10.16311/j.audioe.2020.06.024
|
[15] |
YANGZHOU Jianyun, MA Zhengyu, and HUANG Xun. A deep neural network approach to acoustic source localization in a shallow water tank experiment[J]. The Journal of the Acoustical Society of America, 2019, 146(6): 4802–4811. doi: 10.1121/1.5138596
|
[16] |
SAMEK W, MONTAVON G, LAPUSCHKIN S, et al. Explaining deep neural networks and beyond: A review of methods and applications[J]. Proceedings of the IEEE, 2021, 109(3): 247–278. doi: 10.1109/JPROC.2021.3060483
|
[17] |
SIAMI-NAMINI S, TAVAKOLI N, and NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]. 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, USA, 2019: 3285–3292.
|
[18] |
王同, 苏林, 任群言, 等. 基于注意力机制的全海深声速剖面预测方法[J]. 电子与信息学报, 2022, 44(3): 726–736. doi: 10.11999/JEIT210078
WANG Tong, SU Lin, REN Qunyan et al. Full-sea depth sound speed profiles prediction using RNN and attention mechanism[J]. Journal of Electronics &Information Technology, 2022, 44(3): 726–736. doi: 10.11999/JEIT210078
|
[19] |
李文洁, 葛凤培, 张鹏远, 等. 双向长短时记忆模型训练中的空间平滑正则化方法研究[J]. 电子与信息学报, 2019, 41(3): 544–550. doi: 10.11999/JEIT180314
LI Wenjie, GE Fengpei, ZHANG Pengyuan, et al. Spatial smoothing regularization for bi-direction long short-term memory model[J]. Journal of Electronics &Information Technology, 2019, 41(3): 544–550. doi: 10.11999/JEIT180314
|
[20] |
RICKARD J and ZEIDLER J. Second-order output statistics of the adaptive line enhancer[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, 27(1): 31–39. doi: 10.1109/TASSP.1979.1163203
|
[21] |
NEHORAI A and MALAH D. On the stability and performance of the adaptive line enhancer[C]. ICASSP'80. IEEE International Conference on Acoustics, Speech, and Signal Processing, Denver, USA, 1980: 478–481.
|