Advanced Search
Volume 46 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
HOU Jin, SHENG Yaobao, ZHANG Bo. DOA Estimation of Direction Vector Estimation Algorithm Based on Second-order Statistical Properties[J]. Journal of Electronics & Information Technology, 2024, 46(2): 697-704. doi: 10.11999/JEIT230172
Citation: HOU Jin, SHENG Yaobao, ZHANG Bo. DOA Estimation of Direction Vector Estimation Algorithm Based on Second-order Statistical Properties[J]. Journal of Electronics & Information Technology, 2024, 46(2): 697-704. doi: 10.11999/JEIT230172

DOA Estimation of Direction Vector Estimation Algorithm Based on Second-order Statistical Properties

doi: 10.11999/JEIT230172
Funds:  The National Key R&D Plan (2020YFB1711902)
  • Received Date: 2023-03-20
  • Rev Recd Date: 2023-07-14
  • Available Online: 2023-07-20
  • Publish Date: 2024-02-29
  • In order to reduce the influence of errors of antenna array manifold on Direction of Arrival (DOA) estimation results, and to overcome the shortcoming of DOA estimation algorithm based on traditional blind source separation algorithm that can not be applied to direction-finding equipment with few channel receivers, a DOA estimation algorithm of direction vector estimation algorithm based on second-order statistical properties is proposed. Firstly, according to the characteristics of spectral function of Deterministic Maximum Likelihood (DML) estimation algorithm, an optimization problem with unitary constraints on covariance matrix is constructed. Then, the actual direction vector of each single signal is obtained by optimizing the problem. Finally, the actual direction vectors of each single signal are input into the spatial spectral algorithm to achieve DOA estimation. Because the DOA estimation of multiple signals is transformed into the DOA estimation of multiple single signals, the proposed algorithm has better DOA estimation performance than the traditional DOA method when the antenna array manifold has errors. Because the proposed algorithm only uses covariance matrix, the proposed algorithm can be applied to direction-finding equipment with few channel receivers. The simulation results show that the proposed algorithm has higher accuracy, immunity and resolution than the traditional DOA estimation algorithm when the array manifold has errors and the equipment is the direction-finding equipment with few channel receivers.
  • loading
  • [1]
    FUCHS J, KASPER A, LÜBKE M, et al. High-resolution direction-of-arrival estimation using distributed radar sensors[C]. 2022 IEEE Radio and Wireless Symposium (RWS), Las Vegas, USA, 2022: 53–56.
    [2]
    王洪雁, 于若男, 潘勉, 等. 基于协方差矩阵重构的离网格DOA估计方法[J]. 电子与信息学报, 2021, 43(10): 2863–2870. doi: 10.11999/JEIT200697.

    WANG Hongyan, YU Ruonan, PAN Mian, et al. Off-grid DOA estimation method based on covariance matrix reconstruction[J]. Journal of Electronics &Information Technology, 2021, 43(10): 2863–2870. doi: 10.11999/JEIT200697.
    [3]
    WANG Lei, REN Chunhui, LIU Renting, et al. Direction-of-arrival estimation for nested array using mixed-resolution ADCs[J]. IEEE Communications Letters, 2022, 26(8): 1868–1872. doi: 10.1109/LCOMM.2022.3178617.
    [4]
    ZHAO Luming, LIU Hongqing, LI Yong, et al. DOA estimation under sensor gain and phase uncertainties[C]. 2015 International Conference on Estimation, Detection and Information Fusion (ICEDIF), Harbin, China, 2015: 209–213.
    [5]
    SCHENCK D, MESTRE X, and PESAVENTO M. Probability of resolution of MUSIC and g-MUSIC: An asymptotic approach[J]. IEEE Transactions on Signal Processing, 2022, 70: 3566–3581. doi: 10.1109/TSP.2022.3178820.
    [6]
    YANG Zai. Nonasymptotic performance analysis of ESPRIT and spatial-smoothing ESPRIT[J]. IEEE Transactions on Information Theory, 2023, 69(1): 666–681. doi: 10.1109/TIT.2022.3199405.
    [7]
    GONG Mingyan and LYU Bin. Alternating maximization and the EM algorithm in maximum-likelihood direction finding[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 9634–9645. doi: 10.1109/TVT.2021.3106794.
    [8]
    WANG Wenyi and WU Renbiao. High resolution direction of arrival (DOA) estimation based on improved orthogonal matching pursuit (OMP) algorithm by iterative local searching[J]. Sensors, 2013, 13(9): 11167–11183. doi: 10.3390/s130911167.
    [9]
    WANG Qing, DOU Tongdong, CHEN Hua, et al. Effective block sparse representation algorithm for DOA estimation with unknown mutual coupling[J]. IEEE Communications Letters, 2017, 21(12): 2622–2625. doi: 10.1109/LCOMM.2017.2747547.
    [10]
    TIAN Ye, WANG Ran, CHEN Hua, et al. Real-valued DOA estimation utilizing enhanced covariance matrix with unknown mutual coupling[J]. IEEE Communications Letters, 2022, 26(4): 912–916. doi: 10.1109/LCOMM.2022.3148260.
    [11]
    LIU Jianfei, WU Xiongbin, EMERY W J, et al. Direction-of-arrival estimation and sensor array error calibration based on blind signal separation[J]. IEEE Signal Processing Letters, 2017, 24(1): 7–11. doi: 10.1109/LSP.2016.2632750.
    [12]
    侯进, 李昀喆, 李天宇. 基于去噪复数FastICA和稀疏重构的相干信号欠定DOA估计[J]. 通信学报, 2021, 42(11): 172–181. doi: 10.11959/j.issn.1000-436x.2021219.

    HOU Jin, LI Yunzhe, and LI Tianyu. Underdetermined DOA estimation of coherent signals based on denoising complex FastICA and sparse reconstruction[J]. Journal on Communications, 2021, 42(11): 172–181. doi: 10.11959/j.issn.1000-436x.2021219.
    [13]
    BINGHAM E and HYVÄRINEN A. A fast fixed-point algorithm for independent component analysis of complex valued signals[J]. International Journal of Neural Systems, 2000, 10(1): 1–8. doi: 10.1142/S0129065700000028.
    [14]
    HU Jing and FAN Lehao. Application of JADE to separate complex-valued sources[C]. 2011 International Conference on Computer Science and Service System (CSSS), Nanjing, China, 2011: 1127–1129.
    [15]
    赵自强, 曹岸杰, 杨勇, 等. 基于时间调制的单通道多基线相位干涉仪测向[J]. 电波科学学报, 2023, 38(1): 96–102,129. doi: 10.12265/j.cjors.2022096.

    ZHAO Ziqiang, CAO Anjie, YANG Yong, et al. Single-channel multiple baseline interferometer DF with time modulation[J]. Chinese Journal of Radio Science, 2023, 38(1): 96–102,129. doi: 10.12265/j.cjors.2022096.
    [16]
    BAZZI A, SLOCK D T M, and MEILHAC L. Detection of the number of superimposed signals using modified MDL criterion: A random matrix approach[C]. Proceedings of 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 2016: 4593–4597.
    [17]
    JIANG Jiajia, WEI Wenxue, SHAO Wanlu, et al. Research on large-scale Bi-level particle swarm optimization algorithm[J]. IEEE Access, 2021, 9: 56364–56375. doi: 10.1109/ACCESS.2021.3072199.
    [18]
    MANTON J H. Optimization algorithms exploiting unitary constraints[J]. IEEE Transactions on Signal Processing, 2002, 50(3): 635–650. doi: 10.1109/78.984753.
    [19]
    ABRUDAN T E, ERIKSSON J, and KOIVUNEN V. Steepest descent algorithms for optimization under unitary matrix constraint[J]. IEEE Transactions on Signal Processing, 2008, 56(3): 1134–1147. doi: 10.1109/TSP.2007.908999.
    [20]
    BIRTEA P, CAŞU I, and COMĂNESCU D. Constraint optimization and SU(N) quantum control landscapes[J]. Journal of Physics A:Mathematical and Theoretical, 2022, 55(11): 115301. doi: 10.1088/1751-8121/ac5189.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (473) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return