Citation: | ZHOU Xiaotian, SUN Shang, ZHANG Haixia, DENG Yiqin, LU Binbin. Real-time Task Scheduling for Multi-access Edge Computing-enabled AI Quality Inspection Systems[J]. Journal of Electronics & Information Technology, 2024, 46(2): 662-670. doi: 10.11999/JEIT230129 |
[1] |
周华, 郑荣, 肖荣. 工业场景下AI质检关键技术及平台架构研究[J]. 现代信息科技, 2022, 6(5): 149–151,156. doi: 10.19850/j.cnki.2096-4706.2022.05.039.
ZHOU Hua, ZHENG Rong, and XIAO Rong. Research on key technology and platform architecture of AI quality inspection under industrial scene[J]. Modern Information Technology, 2022, 6(5): 149–151,156. doi: 10.19850/j.cnki.2096-4706.2022.05.039.
|
[2] |
蒋音. 深度学习技术开启工业AI质检新范式[J]. 大数据时代, 2022(11): 38–48.
JIANG Yin. Deep learning offers a new paradigm of quality inspection supported by industrial AI[J]. Big Data Time, 2022(11): 38–48.
|
[3] |
DAI Yueyue, ZHANG Ke, MAHARJAN S, et al. Deep reinforcement learning for stochastic computation offloading in digital twin networks[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4968–4977. doi: 10.1109/TII.2020.3016320.
|
[4] |
胡致远, 胡文前, 李香, 等. 面向业务可达性的广域工业互联网调度算法研究[J]. 电子与信息学报, 2021, 43(9): 2608–2616. doi: 10.11999/JEIT200583.
HU Zhiyuan, HU Wenqian, LI Xiang, et al. Research on wide area industrial internet scheduling algorithm based on service reachability[J]. Journal of Electronics &Information Technology, 2021, 43(9): 2608–2616. doi: 10.11999/JEIT200583.
|
[5] |
BAHRAMI M. Cloud computing for emerging mobile cloud apps[C]. 2015 3rd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, San Francisco, USA, 2015: 4–5.
|
[6] |
ZHANG Fan, HAN Guanjie, LIU Li, et al. Deep reinforcement learning based cooperative partial task offloading and resource allocation for IIoT applications[J]. IEEE Transactions on Network Science and Engineering, 2022: 1.
|
[7] |
MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201.
|
[8] |
李一倩, 刘留, 李慧婷, 等. 工业物联网无线信道特性研究[J]. 物联网学报, 2019, 3(4): 34–47. doi: 10.11959/j.issn.2096-3750.2019.00130.
LI Yiqian, LIU Liu, LI Huiting, et al. Research on characteristics of industrial IoT wireless channel[J]. Chinese Journal on Internet of Things, 2019, 3(4): 34–47. doi: 10.11959/j.issn.2096-3750.2019.00130.
|
[9] |
张克, 刘留, 袁泽, 等. 工业物联网无线信道与噪声特性[J]. 电信科学, 2018, 34(8): 87–97. doi: 10.11959/j.issn.1000-0801.2018217.
ZHANG Ke, LIU Liu, YUAN Ze, et al. Wireless channel and noise characteristics in industrial internet of things[J]. Telecommunications Science, 2018, 34(8): 87–97. doi: 10.11959/j.issn.1000-0801.2018217.
|
[10] |
GUO Kai, YANG Mingcong, ZHANG Yongbing, et al. Joint computation offloading and bandwidth assignment in cloud-assisted edge computing[J]. IEEE Transactions on Cloud Computing, 2022, 10(1): 451–460. doi: 10.1109/TCC.2019.2950395.
|
[11] |
YANG Lei, LIU Bo, CAO Jiannong, et al. Joint computation partitioning and resource allocation for latency sensitive applications in mobile edge clouds[J]. IEEE Transactions on Services Computing, 2021, 14(5): 1439–1452. doi: 10.1109/TSC.2018.2890603.
|
[12] |
刘斐, 曹钰杰, 章国安. 车联网场景下移动边缘计算协作式资源分配策略[J]. 电讯技术, 2021, 61(7): 858–864. doi: 10.3969/j.issn.1001-893x.2021.07.012.
LIU Fei, CAO Yujie, and ZHANG Guoan. Collaborative resource allocation strategy for mobile edge computing in vehicular networks[J]. Telecommunication Engineering, 2021, 61(7): 858–864. doi: 10.3969/j.issn.1001-893x.2021.07.012.
|
[13] |
周天清, 曾新亮, 胡海琴. 基于混合粒子群算法的计算卸载成本优化[J]. 电子与信息学报, 2022, 44(9): 3065–3074. doi: 10.11999/JEIT211390.
ZHOU Tianqing, ZENG Xinliang, and HU Haiqin. Computation offloading cost optimization based on hybrid particle swarm optimization algorithm[J]. Journal of Electronics &Information Technology, 2022, 44(9): 3065–3074. doi: 10.11999/JEIT211390.
|
[14] |
周天清, 胡海琴, 曾新亮. NOMA-MEC系统中基于改进遗传算法的协作式计算卸载与资源管理[J]. 电子与信息学报, 2022, 44(9): 3014–3023. doi: 10.11999/JEIT220306.
ZHOU Tianqing, HU Haiqin, and ZENG Xinliang. Cooperative computation offloading and resource management based on improved genetic algorithm in NOMA-MEC systems[J]. Journal of Electronics &Information Technology, 2022, 44(9): 3014–3023. doi: 10.11999/JEIT220306.
|
[15] |
LUO Quyuan, LI Changle, LUAN T H, et al. Collaborative data scheduling for vehicular edge computing via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2020, 7(10): 9637–9650. doi: 10.1109/JIOT.2020.2983660.
|
[16] |
ZHANG Weiting, YANG Dong, PENG Haixia, et al. Deep reinforcement learning based resource management for DNN inference in industrial IoT[J]. IEEE Transactions on Vehicular Technology, 2021, 70(8): 7605–7618. doi: 10.1109/TVT.2021.3068255.
|
[17] |
CHEN Ying, LIU Zhiyong, ZHANG Yongchao, et al. Deep reinforcement learning-based dynamic resource management for mobile edge computing in industrial internet of things[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4925–4934. doi: 10.1109/TII.2020.3028963.
|
[18] |
YU Shuai, CHEN Xu, ZHOU Zhi, et al. When deep reinforcement learning meets federated learning: Intelligent multitimescale resource management for multiaccess edge computing in 5G ultradense network[J]. IEEE Internet of Things Journal, 2021, 8(4): 2238–2251. doi: 10.1109/JIOT.2020.3026589.
|
[19] |
SUTTON R S and BARTO A G. Reinforcement Learning: An Introduction[M]. 2nd ed. Cambridge: Bradford Books, 2018: 62–64.
|
[20] |
LIU Binghong, LIU Chenxi and PENG Mugen. Computation offloading and resource allocation in unmanned aerial vehicle networks[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4981–4995. doi: 10.1109/TVT.2022.3222907.
|
[21] |
DAI Bin, NIU Jianwei, REN Tao, et al. Toward mobility-aware computation offloading and resource allocation in end–edge–cloud orchestrated computing[J]. IEEE Internet of Things Journal, 2022, 9(19): 19450–19462. doi: 10.1109/JIOT.2022.3168036.
|
[22] |
QIAO Guanhua, LENG Supeng, MAHARJAN S, et al. Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2020, 7(1): 247–257. doi: 10.1109/JIOT.2019.2945640.
|