Advanced Search
Volume 46 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
XU Yongjun, JIANG Siqiao, ZHANG Haibo, WANG Zhengqiang, ZHOU Jihua. Robust Secure Resource Allocation Algorithm for Cognitive Backscatter Communication with Hardware Impairment[J]. Journal of Electronics & Information Technology, 2024, 46(2): 652-661. doi: 10.11999/JEIT230117
Citation: XU Yongjun, JIANG Siqiao, ZHANG Haibo, WANG Zhengqiang, ZHOU Jihua. Robust Secure Resource Allocation Algorithm for Cognitive Backscatter Communication with Hardware Impairment[J]. Journal of Electronics & Information Technology, 2024, 46(2): 652-661. doi: 10.11999/JEIT230117

Robust Secure Resource Allocation Algorithm for Cognitive Backscatter Communication with Hardware Impairment

doi: 10.11999/JEIT230117
Funds:  The National Natural Science Foundation of China (62271094), The Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-K202200601), The China Postdoctoral Science Foundation (2022MD723725), The Sichuan Regional Innovation Cooperation Project (2022YFQ0017)
  • Received Date: 2023-03-01
  • Rev Recd Date: 2023-05-11
  • Available Online: 2023-05-18
  • Publish Date: 2024-02-29
  • To improve spectral efficiency, transmission robustness, and information security of backscatter communication networks, a robust secure resource allocation algorithm is proposed for cognitive backscatter communication networks with hardware impairments. Firstly, considering the constraints of the minimum secure rate of each cognitive backscatter user, transmission time, energy harvesting, and reflection coefficients, a multivariable coupled resource allocation problem with throughput maximization is established under bounded channel uncertainties and spectrum sensing errors. Secondly, the original problem is transformed into a convex problem by using a worst-case approach, successive convex approximation, alternating optimization, and an iteration-based robust resource allocation algorithm is proposed to solve it. Simulation results show that the proposed algorithm has better robustness by comparing it with the existing algorithms.
  • loading
  • [1]
    XU Yongjun, GUI Guan, GACANIN H, et al. A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2): 668–695. doi: 10.1109/COMST.2021.3059896.
    [2]
    XU Yongjun, GU Bowen, HU R Q, et al. Joint computation offloading and radio resource allocation in MEC-based wireless-powered backscatter communication networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(6): 6200–6205. doi: 10.1109/TVT.2021.3077094.
    [3]
    张晓茜, 徐勇军. 面向零功耗物联网的反向散射通信综述[J]. 通信学报, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.

    ZHANG Xiaoxi and XU Yongjun. Survey on backscatter communication for zero-power IoT[J]. Journal on Communications, 2022, 43(11): 199–212. doi: 10.11959/j.issn.1000-436x.2022199.
    [4]
    徐勇军, 杨浩克, 李国军, 等. 多标签无线供电反向散射通信网络能效优化算法[J]. 电子与信息学报, 2022, 44(10): 3492–3498. doi: 10.11999/JEIT210772.

    XU Yongjun, YANG Haoke, LI Guojun, et al. Energy-efficient optimization algorithm in multi-tag wireless-powered backscatter communication networks[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3492–3498. doi: 10.11999/JEIT210772.
    [5]
    徐勇军. 下垫式认知无线电网络动态资源分配问题研究[D]. [博士论文]. 吉林大学, 2015.

    XU Yongjun. Research on dynamic resource allocation for underlay cognitive radio networks[D]. [Ph. D. dissertation]. Jilin University, 2015.
    [6]
    LI Xingwang, ZHENG Yike, KHAN W U, et al. Physical layer security of cognitive ambient backscatter communications for green internet-of-things[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1066–1076. doi: 10.1109/TGCN.2021.3062060.
    [7]
    LI Xingwang, WANG Qunshu, ZENG Ming, et al. Physical-layer authentication for ambient backscatter-aided NOMA symbiotic systems[J]. IEEE Transactions on Communications, 2023, 71(4): 2288–2303. doi: 10.1109/TCOMM.2023.3245659.
    [8]
    XU Yongjun, XIE Hao, LI Dong, et al. Energy-efficient beamforming for heterogeneous industrial IoT networks with phase and distortion noises[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 7423–7434. doi: 10.1109/TII.2022.3158612.
    [9]
    LI Xingwang, LIU Huiling, LI Geng, et al. Effective capacity analysis of AmBC-NOMA communication systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 11257–11261. doi: 10.1109/TVT.2022.3186871.
    [10]
    JAFARI R and FAPOJUWO A O. Maximizing secondary users’ sum-throughput in an in-band full-duplex cognitive wireless powered backscatter communication network[J]. IEEE Systems Journal, 2022, 16(3): 4082–4093. doi: 10.1109/JSYST.2021.3124097.
    [11]
    XIAO Sa, GUO Huayan, and LIANG Yingchang. Resource allocation for full-duplex-enabled cognitive backscatter networks[J]. IEEE Transactions on Wireless Communications, 2019, 18(6): 3222–3235. doi: 10.1109/TWC.2019.2912203.
    [12]
    LYU Bin, GUO Haiyan, YANG Zhen, et al. Throughput maximization for hybrid backscatter assisted cognitive wireless powered radio networks[J]. IEEE Internet of Things Journal, 2018, 5(3): 2015–2024. doi: 10.1109/JIOT.2018.2820180.
    [13]
    KANG Xin, LIANG Yingchang, and YANG Jing. Riding on the primary: A new spectrum sharing paradigm for wireless-powered IoT devices[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 6335–6347. doi: 10.1109/TWC.2018.2859389.
    [14]
    ZHUANG Yuandong, LI Xi, JI Hong, et al. Optimal resource allocation for RF-powered underlay cognitive radio networks with ambient backscatter communication[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15216–15228. doi: 10.1109/TVT.2020.3037152.
    [15]
    KISHORE R, GURUGOPINATH S, SOFOTASIOS P C, et al. Opportunistic ambient backscatter communication in RF-powered cognitive radio networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(2): 413–426. doi: 10.1109/TCCN.2019.2907090.
    [16]
    ZHANG Yu, GAO Feifei, FAN Lisheng, et al. Secure communications for multi-tag backscatter systems[J]. IEEE Wireless Communications Letters, 2019, 8(4): 1146–1149. doi: 10.1109/LWC.2019.2909199.
    [17]
    WANG Pu, WANG Ning, DABAGHCHIAN M, et al. Optimal resource allocation for secure multi-user wireless powered backscatter communication with artificial noise[C]// IEEE Conference on Computer Communications, Paris, France, 2019: 460–468.
    [18]
    XU Yongjun, GU Bowen, and LI Dong. Robust energy-efficient optimization for secure wireless-powered backscatter communications with a non-linear EH model[J]. IEEE Communications Letters, 2021, 25(10): 3209–3213. doi: 10.1109/LCOMM.2021.3097737.
    [19]
    XU Yongjun, XIE Hao, WU Qingqing, et al. Robust max-min energy efficiency for RIS-aided HetNets with distortion noises[J]. IEEE Transactions on Communications, 2022, 70(2): 1457–1471. doi: 10.1109/TCOMM.2022.3141798.
    [20]
    YE Yinghui, SHI Liqin, CHU Xiaoli, et al. Mutualistic cooperative ambient backscatter communications under hardware impairments[J]. IEEE Transactions on Communications, 2022, 70(11): 7656–7668. doi: 10.1109/TCOMM.2022.3201119.
    [21]
    XU Yongjun, YANG Meng, YANG Yang, et al. Max-min energy-efficient optimization for cognitive heterogeneous networks with spectrum sensing errors and channel uncertainties[J]. IEEE Wireless Communications Letters, 2022, 11(6): 1113–1117. doi: 10.1109/LWC.2021.3130632.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (362) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return