| Citation: | YU Xiaohui, FENG Hai, TIAN Baofeng, SUN Haixin, SUN Xiaodong. Parameter Estimation of Surface Nuclear Magnetic Resonance Signals Based on Total Least Squares-Estimation of Signal Parameters via Rotational Invariance Technique[J]. Journal of Electronics & Information Technology, 2024, 46(2): 720-727. doi: 10.11999/JEIT230102 | 
 
	                | [1] | TRUSHKIN D V, SHUSHAKOV O A, and LEGCHENKO A V. The potential of a noise-reducing antenna for surface NMR groundwater surveys in the earth’s magnetic field[J]. Geophysical Prospecting, 1994, 42(8): 855–862. doi:  10.1111/j.1365-2478.1994.tb00245.x. | 
| [2] | RANGEL R C, PARSEKIAN A D, FARQUHARSON L M, et al. Geophysical observations of Taliks below drained lake basins on the arctic coastal plain of Alaska[J]. Journal of Geophysical Research:Solid Earth, 2021, 126(3): e2020JB020889. doi:  10.1029/2020JB020889. | 
| [3] | LI Mengna, ZENG Yijian, LUBCZYNSKI M W, et al. A first investigation of hydrogeology and hydrogeophysics of the Maqu catchment in the Yellow River source region[J]. Earth System Science Data, 2021, 13(10): 4727–4757. doi:  10.5194/essd-13-4727-2021. | 
| [4] | LU Kai, LI Fan, PAN Jianwei, et al. Using electrical resistivity tomography and surface nuclear magnetic resonance to investigate cultural relic preservation in Leitai, China[J]. Engineering Geology, 2021, 285: 106042. doi:  10.1016/J.ENGGEO.2021.106042. | 
| [5] | BEHROOZMAND A A, KEATING K, and AUKEN E. A review of the principles and applications of the NMR technique for near-surface characterization[J]. Surveys in Geophysics, 2015, 36(1): 27–85. doi:  10.1007/s10712-014-9304-0. | 
| [6] | KEATING K, WALSH D O, and GRUNEWALD E. The effect of magnetic susceptibility and magnetic field strength on porosity estimates determined from low-field nuclear magnetic resonance[J]. Journal of Applied Geophysics, 2020, 179: 104096. doi:  10.1016/j.jappgeo.2020.104096. | 
| [7] | KREMER T, IRONS T, MÜLLER-PETKE M, et al. Review of acquisition and signal processing methods for electromagnetic noise reduction and retrieval of surface nuclear magnetic resonance parameters[J]. Surveys in Geophysics, 2022, 43(4): 999–1053. doi:  10.1007/S10712-022-09695-3. | 
| [8] | LEGCHENKO A and VALLA P. A review of the basic principles for proton magnetic resonance sounding measurements[J]. Journal of Applied Geophysics, 2002, 50(1/2): 3–19. doi:  10.1016/S0926-9851(02)00127-1. | 
| [9] | COSTABEL S and MÜLLER-PETKE M. Despiking of magnetic resonance signals in time and wavelet domains[J]. Near Surface Geophysics, 2014, 12(2): 185–198. doi:  10.3997/1873-0604.2013027. | 
| [10] | 万玲, 张扬, 林君, 等. 基于能量运算的磁共振信号尖峰噪声抑制方法[J]. 地球物理学报, 2016, 59(6): 2290–2301. doi:  10.6038/cjg20160631. WAN Ling, ZHANG Yang, LIN Jun, et al. Spikes removal of magnetic resonance sounding data based on energy calculation[J]. Chinese Journal of Geophysics, 2016, 59(6): 2290–2301. doi:  10.6038/cjg20160631. | 
| [11] | LEGCHENKO A and VALLA P. Removal of power-line harmonics from proton magnetic resonance measurements[J]. Journal of Applied Geophysics, 2003, 53(2/3): 103–120. doi:  10.1016/S0926-9851(03)00041-7. | 
| [12] | LARSEN J J, DALGAARD E, and AUKEN E. Noise cancelling of MRS signals combining model-based removal of powerline harmonics and multichannel Wiener filtering[J]. Geophysical Journal International, 2014, 196(2): 828–836. doi:  10.1093/gji/ggt422. | 
| [13] | 田宝凤, 朱慧, 易晓峰, 等. 基于谐波建模和自相关的磁共振信号消噪与提取方法研究[J]. 地球物理学报, 2018, 61(2): 767–780. doi:  10.6038/cjg2018L0091. TIAN Baofeng, ZHU Hui, YI Xiaofeng, et al. Denoising and extraction method of magnetic resonance sounding signal based on adaptive harmonic modeling and autocorrelation[J]. Chinese Journal of Geophysics, 2018, 61(2): 767–780. doi:  10.6038/cjg2018L0091. | 
| [14] | 庄双勇, 赵伟, 赵东芳, 等. 一种基于滑窗TLS-ESPRIT算法的超谐波动态分析方法[J]. 计量学报, 2020, 41(4): 475–483. doi:  10.3969/j.issn.1000-1158.2020.04.014. ZHUANG Shuangyong, ZHAO Wei, ZHAO Dongfang, et al. A supraharmonics dynamic analysis method based on sliding-window TLS-ESPRIT algorithm[J]. Acta Metrologica Sinica, 2020, 41(4): 475–483. doi:  10.3969/j.issn.1000-1158.2020.04.014. | 
| [15] | CHEN Jian, JIN Tao, MOHAMED M A, et al. An adaptive TLS-ESPRIT algorithm based on an S-G filter for analysis of low frequency oscillation in wide area measurement systems[J]. IEEE Access, 2019, 7: 47644–47654. doi:  10.1109/ACCESS.2019.2908629. | 
| [16] | SAMAL S K and SUBUDHI B. New signal subspace approach to estimate the inter-area oscillatory modes in power system using TLS-ESPRIT algorithm[J]. IET Generation, Transmission & Distribution, 2019, 13(18): 4123–4140. doi:  10.1049/iet-gtd.2018.6401. | 
| [17] | 张硕, 杨君, 葛鹏程, 等. 基于Hankel矩阵改进的TLS-ESPRIT多频带融合处理[J]. 电光与控制, 2022, 29(9): 90–95. doi:  10.3969/j.issn.1671-637X.2022.09.018. ZHANG Shuo, YANG Jun, GE Pengcheng, et al. TLS-ESPRIT multiband fusion processing based on hankel matrix improvement[J]. Electronics Optics &Control, 2022, 29(9): 90–95. doi:  10.3969/j.issn.1671-637X.2022.09.018. | 
| [18] | 张小宽, 郑舒予, 奚之飞, 等. 基于改进LS-ESPRIT算法的GTD模型参数估计与RCS重构[J]. 电子与信息学报, 2020, 42(10): 2493–2499. doi:  10.11999/JEIT190747. ZHANG Xiaokuan, ZHENG Shuyu, XI Zhifei, et al. GTD model parameters estimation and RCS reconstruction based on the improved LS-ESPRIT algorithm[J]. Journal of Electronics &Information Technology, 2020, 42(10): 2493–2499. doi:  10.11999/JEIT190747. | 
| [19] | GRUNEWALD E, KNIGHT R, and WALSH D. Advancement and validation of surface nuclear magnetic resonance spin-echo measurements of T2[J]. Geophysics, 2014, 79(2): EN15–EN23. doi:  10.1190/geo2013-0105.1. | 
| [20] | SRIVASTAVA A K, TIWARI A N, and SINGH S N. Harmonic/interharmonic estimation using standard deviation assisted ESPRIT method[J]. COMPEL:The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2021, 40(6): 1067–1083. doi:  10.1108/COMPEL-03-2021-0108. | 
