| Citation: | GUO Tiefeng, HE Jianjun, SHEN Shuai, WANG Xiang, ZHANG Binhan. Abnormal Battery On-line Detection Method Based on Dynamic Time Warping and Improved Variational Auto-Encoder[J]. Journal of Electronics & Information Technology, 2024, 46(2): 738-747. doi: 10.11999/JEIT230084 | 
 
	                | [1] | 肖健夫, 孙瑞, 闵婕, 等. 锂离子动力电池系统故障检测[J]. 电源技术, 2021, 45(6): 736–739,790. doi:  10.3969/j.issn.1002-087X.2021.06.012. XIAO Jianfu, SUN Rui, MIN Jie, et al. Fault detection of lithium-ion power battery system[J]. Chinese Journal of Power Sources, 2021, 45(6): 736–739,790. doi:  10.3969/j.issn.1002-087X.2021.06.012. | 
| [2] | 马速良, 武亦文, 李建林, 等. 聚类分析架构下基于遗传算法的电池异常数据检测方法[J]. 电网技术, 2023, 47(2): 859–867. doi:  10.13335/j.1000-3673.pst.2021.1871. MA Suliang, WU Yiwen, LI Jianlin, et al. Anomaly detection for battery data based on genetic algorithm under cluster analysis framework[J]. Power System Technology, 2023, 47(2): 859–867. doi:  10.13335/j.1000-3673.pst.2021.1871. | 
| [3] | JIN Ruochen, WEI Bo, LUO Yongmei, et al. Blockchain-based data collection with efficient anomaly detection for estimating battery state-of-health[J]. IEEE Sensors Journal, 2021, 21(12): 13455–13465. doi:  10.1109/JSEN.2021.3066785. | 
| [4] | SAXENA S, KANG M, XING Y J, et al. Anomaly detection during lithium-ion battery qualification testing[C]. 2018 IEEE International Conference on Prognostics and Health Management, Seattle, USA, 2018: 1–6. | 
| [5] | 董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi:  10.11999/JEIT190266. DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi:  10.11999/JEIT190266. | 
| [6] | KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014. | 
| [7] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi:  10.1145/3422622. | 
| [8] | AN J and CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1–18. | 
| [9] | 秦婉亭, 老松杨, 汤俊, 等. 基于变分自编码器的飓风轨迹异常检测方法[J]. 系统仿真学报, 2021, 33(9): 2191–2201. doi:  10.16182/j.issn1004731x.joss.20-0369. QIN Wanting, LAO Songyang, TANG Jun, et al. Hurricane trajectory outlier detection method based on variational auto-encode[J]. Journal of System Simulation, 2021, 33(9): 2191–2201. doi:  10.16182/j.issn1004731x.joss.20-0369. | 
| [10] | 常吉亮, 谢磊, 赵建伟, 等. 基于VAE-LSTM模型的航迹异常检测算法[J]. 交通信息与安全, 2020, 38(6): 1–8. doi:  10.3963/j.jssn.1674-4861.2020.06.001. CHANG Jiliang, XIE Lei, ZHAO Jianwei, et al. An anomaly detection algorithm for ship trajectory data based on VAE-LSTM model[J]. Journal of Transport Information and Safety, 2020, 38(6): 1–8. doi:  10.3963/j.jssn.1674-4861.2020.06.001. | 
| [11] | ZHOU Chong and PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 665–674. | 
| [12] | LI Junying, REN Weijie, and HAN Min. Variational auto-encoders based on the shift correction for imputation of specific missing in multivariate time series[J]. Measurement, 2021, 186: 110055. doi:  10.1016/j.measurement.2021.110055. | 
| [13] | HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi:  10.1162/neco.1997.9.8.1735. | 
| [14] | BERNDT D J and CLIFFORD J. Using dynamic time warping to find patterns in time series[C]. The 3rd International Conference on Knowledge Discovery and Data Mining, Seattle, USA, 1994: 359–370. | 
| [15] | SHAHRIARI B, SWERSKY K, WANG Ziyu, et al. Taking the human out of the loop: A review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148–175. doi:  10.1109/JPROC.2015.2494218. | 
| [16] | FRÉCHET M M. Sur quelques points du calcul fonctionnel[J]. Rendiconti del Circolo Matematico di Palermo (1884–1940), 1906, 22(1): 1–72. doi:  10.1007/BF03018603. | 
| [17] | TAHA A A and HANBURY A. An efficient algorithm for calculating the exact Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(11): 2153–2163. doi:  10.1109/TPAMI.2015.2408351. | 
| [18] | SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443–1471. doi:  10.1162/089976601750264965. | 
| [19] | LI Lu, HUANG Liusheng, YANG Wei, et al. Privacy-preserving LOF outlier detection[J]. Knowledge and Information Systems, 2015, 42(3): 579–597. doi:  10.1007/s10115-013-0692-0. | 
| [20] | 王诚, 狄萱. 孤立森林算法研究及并行化实现[J]. 计算机技术与发展, 2021, 31(6): 13–18. doi:  10.3969/j.issn.1673-629X.2021.06.003. WANG Cheng and DI Xuan. Research and parallelization of isolation forest algorithm[J]. Computer Technology and Development, 2021, 31(6): 13–18. doi:  10.3969/j.issn.1673-629X.2021.06.003. | 
