Advanced Search
Volume 46 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
GUO Tiefeng, HE Jianjun, SHEN Shuai, WANG Xiang, ZHANG Binhan. Abnormal Battery On-line Detection Method Based on Dynamic Time Warping and Improved Variational Auto-Encoder[J]. Journal of Electronics & Information Technology, 2024, 46(2): 738-747. doi: 10.11999/JEIT230084
Citation: GUO Tiefeng, HE Jianjun, SHEN Shuai, WANG Xiang, ZHANG Binhan. Abnormal Battery On-line Detection Method Based on Dynamic Time Warping and Improved Variational Auto-Encoder[J]. Journal of Electronics & Information Technology, 2024, 46(2): 738-747. doi: 10.11999/JEIT230084

Abnormal Battery On-line Detection Method Based on Dynamic Time Warping and Improved Variational Auto-Encoder

doi: 10.11999/JEIT230084
Funds:  National Key R&D Program of China (2020YFB1710600)
  • Received Date: 2023-02-22
  • Rev Recd Date: 2023-06-16
  • Available Online: 2023-06-28
  • Publish Date: 2024-02-29
  • In the process of battery production, the traditional detection accuracy of abnormal batteries is poor, and the offline anomaly detection method after production is inefficient. To solve these problems, a lithium battery anomaly online detection method integrating Long Short-Term Memory Variational AutoEncoder and Dynamic Time Warping evaluation (VAE-LSTM-DTW) is proposed, which realizes the online detection of abnormal battery conditions and prevents the time and energy wastage caused by offlize anomaly detection. Firstly, the Long Short-Term Memory (LSTM) is introduced into the Variational Auto-Encoder (VAE) model to train the battery time series reconstruction model. Secondly, in battery anomaly detection, the Dynamic Time Warping value (DTW) is introduced into the evaluation index, and the optimal detection threshold is obtained based on Bayesian optimization, and the dynamic warping value of each single battery reconstruction data is abnormally identified. The experimental results indicate that, compared with the traditional anomaly detection methods in this field, the VAE-LSTM-DTW model has superior performance, the accuracy rate and F1-score have been greatly improved, and it has high effectiveness and practicability.
  • loading
  • [1]
    肖健夫, 孙瑞, 闵婕, 等. 锂离子动力电池系统故障检测[J]. 电源技术, 2021, 45(6): 736–739,790. doi: 10.3969/j.issn.1002-087X.2021.06.012.

    XIAO Jianfu, SUN Rui, MIN Jie, et al. Fault detection of lithium-ion power battery system[J]. Chinese Journal of Power Sources, 2021, 45(6): 736–739,790. doi: 10.3969/j.issn.1002-087X.2021.06.012.
    [2]
    马速良, 武亦文, 李建林, 等. 聚类分析架构下基于遗传算法的电池异常数据检测方法[J]. 电网技术, 2023, 47(2): 859–867. doi: 10.13335/j.1000-3673.pst.2021.1871.

    MA Suliang, WU Yiwen, LI Jianlin, et al. Anomaly detection for battery data based on genetic algorithm under cluster analysis framework[J]. Power System Technology, 2023, 47(2): 859–867. doi: 10.13335/j.1000-3673.pst.2021.1871.
    [3]
    JIN Ruochen, WEI Bo, LUO Yongmei, et al. Blockchain-based data collection with efficient anomaly detection for estimating battery state-of-health[J]. IEEE Sensors Journal, 2021, 21(12): 13455–13465. doi: 10.1109/JSEN.2021.3066785.
    [4]
    SAXENA S, KANG M, XING Y J, et al. Anomaly detection during lithium-ion battery qualification testing[C]. 2018 IEEE International Conference on Prognostics and Health Management, Seattle, USA, 2018: 1–6.
    [5]
    董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266.

    DONG Shuqin and ZHANG Bin. Network traffic anomaly detection method based on deep features learning[J]. Journal of Electronics &Information Technology, 2020, 42(3): 695–703. doi: 10.11999/JEIT190266.
    [6]
    KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014.
    [7]
    GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139–144. doi: 10.1145/3422622.
    [8]
    AN J and CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1–18.
    [9]
    秦婉亭, 老松杨, 汤俊, 等. 基于变分自编码器的飓风轨迹异常检测方法[J]. 系统仿真学报, 2021, 33(9): 2191–2201. doi: 10.16182/j.issn1004731x.joss.20-0369.

    QIN Wanting, LAO Songyang, TANG Jun, et al. Hurricane trajectory outlier detection method based on variational auto-encode[J]. Journal of System Simulation, 2021, 33(9): 2191–2201. doi: 10.16182/j.issn1004731x.joss.20-0369.
    [10]
    常吉亮, 谢磊, 赵建伟, 等. 基于VAE-LSTM模型的航迹异常检测算法[J]. 交通信息与安全, 2020, 38(6): 1–8. doi: 10.3963/j.jssn.1674-4861.2020.06.001.

    CHANG Jiliang, XIE Lei, ZHAO Jianwei, et al. An anomaly detection algorithm for ship trajectory data based on VAE-LSTM model[J]. Journal of Transport Information and Safety, 2020, 38(6): 1–8. doi: 10.3963/j.jssn.1674-4861.2020.06.001.
    [11]
    ZHOU Chong and PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]. The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Canada, 2017: 665–674.
    [12]
    LI Junying, REN Weijie, and HAN Min. Variational auto-encoders based on the shift correction for imputation of specific missing in multivariate time series[J]. Measurement, 2021, 186: 110055. doi: 10.1016/j.measurement.2021.110055.
    [13]
    HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
    [14]
    BERNDT D J and CLIFFORD J. Using dynamic time warping to find patterns in time series[C]. The 3rd International Conference on Knowledge Discovery and Data Mining, Seattle, USA, 1994: 359–370.
    [15]
    SHAHRIARI B, SWERSKY K, WANG Ziyu, et al. Taking the human out of the loop: A review of Bayesian optimization[J]. Proceedings of the IEEE, 2016, 104(1): 148–175. doi: 10.1109/JPROC.2015.2494218.
    [16]
    FRÉCHET M M. Sur quelques points du calcul fonctionnel[J]. Rendiconti del Circolo Matematico di Palermo (1884–1940), 1906, 22(1): 1–72. doi: 10.1007/BF03018603.
    [17]
    TAHA A A and HANBURY A. An efficient algorithm for calculating the exact Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(11): 2153–2163. doi: 10.1109/TPAMI.2015.2408351.
    [18]
    SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443–1471. doi: 10.1162/089976601750264965.
    [19]
    LI Lu, HUANG Liusheng, YANG Wei, et al. Privacy-preserving LOF outlier detection[J]. Knowledge and Information Systems, 2015, 42(3): 579–597. doi: 10.1007/s10115-013-0692-0.
    [20]
    王诚, 狄萱. 孤立森林算法研究及并行化实现[J]. 计算机技术与发展, 2021, 31(6): 13–18. doi: 10.3969/j.issn.1673-629X.2021.06.003.

    WANG Cheng and DI Xuan. Research and parallelization of isolation forest algorithm[J]. Computer Technology and Development, 2021, 31(6): 13–18. doi: 10.3969/j.issn.1673-629X.2021.06.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (634) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return