| Citation: | PU Xumin, LIU Yanxiang, SONG Mixue, CHEN Qianbin. Orthogonal Time Frequency Space Channel Estimation Based on Model-driven Deep Learning[J]. Journal of Electronics & Information Technology, 2024, 46(2): 680-687. doi: 10.11999/JEIT230072 | 
 
	                | [1] | WEI Zhiqiang, LI Shuangyang, YUAN Weijie, et al. Orthogonal time frequency space modulation–Part I: Fundamentals and challenges ahead[J]. IEEE Communications Letters, 2023, 27(1): 4–8. doi:  10.1109/LCOMM.2022.3209689. | 
| [2] | HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. Proceedings of 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. | 
| [3] | WEI Zhiqiang, YUAN Weijie, LI Shuangyang, et al. Orthogonal time-frequency space modulation: A promising next-generation waveform[J]. IEEE Wireless Communications, 2021, 28(4): 136–144. doi:  10.1109/MWC.001.2000408. | 
| [4] | ZHANG Mingchen, WANG Fanggang, YUAN Xiaojun, et al. 2D structured turbo compressed sensing for channel estimation in OTFS systems[C]. Proceedings of 2018 IEEE International Conference on Communication Systems, Chengdu, China, 2018: 45–49. | 
| [5] | YUAN Weijie, WEI Zhiqiang, LI Shuangyang, et al. Integrated sensing and communication-assisted orthogonal time frequency space transmission for vehicular networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1515–1528. doi:  10.1109/JSTSP.2021.3117404. | 
| [6] | YUAN Weijie, WEI Zhiqiang, LI Shuangyang, et al. Orthogonal time frequency space modulation–Part III: ISAC and potential applications[J]. IEEE Communications Letters, 2023, 27(1): 14–18. doi:  10.1109/LCOMM.2022.3209651. | 
| [7] | RAMACHANDRAN M K and CHOCKALINGAM A. MIMO-OTFS in high-Doppler fading channels: Signal detection and channel estimation[C]. Proceedings of 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 206–212. | 
| [8] | ZHAO Hang, KANG Ziqi, and WANG Hua. A novel channel estimation scheme for OTFS[C]. Proceedings of the 2020 IEEE 20th International Conference on Communication Technology, Nanning, China, 2020: 12–16. | 
| [9] | RAVITEJA P, PHAN K T, and HONG Yi. Embedded pilot-aided channel estimation for OTFS in delay–Doppler channels[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4906–4917. doi:  10.1109/TVT.2019.2906357. | 
| [10] | YUAN Weijie, LI Shuangyang, WEI Zhiqiang, et al. Data-aided channel estimation for OTFS systems with a superimposed pilot and data transmission scheme[J]. IEEE Wireless Communications Letters, 2021, 10(9): 1954–1958. doi:  10.1109/LWC.2021.3088836. | 
| [11] | LIU Wei, ZOU Liyi, BAI Baoming, et al. Low PAPR channel estimation for OTFS with scattered superimposed pilots[J]. China Communications, 2023, 20(1): 79–87. doi:  10.23919/JCC.2023.01.007. | 
| [12] | WU Xianda, MA Shaodan, and YANG Xi. Tensor-based low-complexity channel estimation for mmWave massive MIMO-OTFS systems[J]. Journal of Communications and Information Networks, 2020, 5(3): 324–334. doi:  10.23919/JCIN.2020.9200896. | 
| [13] | LIAO Yong and LI Xue. Joint multi-domain channel estimation based on sparse Bayesian learning for OTFS system[J]. China Communications, 2023, 20(1): 14–23. doi:  10.23919/JCC.2023.01.002. | 
| [14] | ZHANG Yang, ZHANG Qunfei, HE Chengbing, et al. Channel estimation for OTFS system over doubly spread sparse acoustic channels[J]. China Communications, 2023, 20(1): 50–65. doi:  10.23919/JCC.2023.01.005. | 
| [15] | WANG Tianqi, WEN Chaokai, WANG Hanqing, et al. Deep learning for wireless physical layer: Opportunities and challenges[J]. China Communications, 2017, 14(11): 92–111. doi:  10.1109/CC.2017.8233654. | 
| [16] | LI Qingyu, GONG Yi, MENG Fanke, et al. Residual learning based channel estimation for OTFS system[C]. Proceedings of 2022 IEEE/CIC International Conference on Communications in China, Foshan, China, 2022: 275–280. | 
| [17] | LIU Fei, YUAN Zhengdao, GUO Qinghua, et al. Message passing-based structured sparse signal recovery for estimation of OTFS channels with fractional Doppler shifts[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 7773–7785. doi:  10.1109/TWC.2021.3087501. | 
| [18] | SRIVASTAVA S, SINGH R K, JAGANNATHAM A K, et al. Bayesian learning aided simultaneous row and group sparse channel estimation in orthogonal time frequency space modulated MIMO systems[J]. IEEE Transactions on Communications, 2022, 70(1): 635–648. doi:  10.1109/TCOMM.2021.3123354. | 
| [19] | METZLER C A, MALEKI A, and BARANIUK R G. From denoising to compressed sensing[J]. IEEE Transactions on Information Theory, 2016, 62(9): 5117–5144. doi:  10.1109/TIT.2016.2556683. | 
| [20] | KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi:  10.1145/3065386. | 
| [21] | METZLER C A, MOUSAVI A, and BARANIUK R G. Learned D-AMP: Principled neural network based compressive image recovery[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 1770–1781. | 
| [22] | HE Hengtao, WEN Chaokai, JIN Shi, et al. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems[J]. IEEE Wireless Communications Letters, 2018, 7(5): 852–855. doi:  10.1109/LWC.2018.2832128. | 
| [23] | SHEN Wenqian, DAI Linglong, AN Jianping, et al. Channel estimation for orthogonal time frequency space (OTFS) massive MIMO[J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204–4217. doi:  10.1109/TSP.2019.2919411. | 
| [24] | YANG Jie, WEN Chaokai, JIN Shi, et al. Beamspace channel estimation in mmWave systems via cosparse image reconstruction technique[J]. IEEE Transactions on Communications, 2018, 66(10): 4767–4782. doi:  10.1109/TCOMM.2018.2805359. | 
| [25] | GAO Xinyu, DAI Linglong, HAN Shuangfeng, et al. Reliable beamspace channel estimation for millimeter-wave massive MIMO systems with lens antenna array[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 6010–6021. doi:  10.1109/TWC.2017.2718502. | 
