Citation: | NING Gengxin, XIAO Ruojun, XIE Liang. Estimation of Underwater Acoustic Doppler Factor and time Delay based on time-frequency Analysis of multi-component LFM Signals[J]. Journal of Electronics & Information Technology, 2024, 46(2): 688-696. doi: 10.11999/JEIT230068 |
[1] |
ZHENG Yuan, YANG Gang, and GUO Qichao. Simulation of underwater broadband noise signals’ Doppler frequency shift[C]. Proceedings of the 16th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 2022: 549–552.
|
[2] |
YOO K B and EDELMANN G F. Low complexity multipath and Doppler compensation for direct-sequence spread spectrum signals in underwater acoustic communication[J]. Applied Acoustics, 2021, 180: 108094. doi: 10.1016/j.apacoust.2021.108094.
|
[3] |
JOHNSON M, FREITAG L, and STOJANOVIC M. Improved Doppler tracking and correction for underwater acoustic communications[C]. Proceedings of 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, 1997: 575–578.
|
[4] |
SHARIF B S, NEASHAM J, HINTON O R, et al. A computationally efficient Doppler compensation system for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 52–61. doi: 10.1109/48.820736.
|
[5] |
HUANG Shuxia, FANG Shiliang, and HAN Ning. Iterative matching-based parameter estimation for time-scale underwater acoustic multipath echo[J]. Applied Acoustics, 2020, 159: 107094. doi: 10.1016/j.apacoust.2019.107094.
|
[6] |
PISARENKO V F. The retrieval of harmonics from a covariance function[J]. Geophysical Journal of the Royal Astronomical Society, 1973, 33(3): 347–366. doi: 10.1111/j.1365-246X.1973.tb03424.x.
|
[7] |
YANG Jie, LIU Xiangtian, and YU Fengqi. Doppler shift estimation algorithm with low computational complexity for underwater acoustic communication[C]. Proceedings of the IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, China, 2015: 47–50.
|
[8] |
ZHAO Yanbo, YU Hua, WEI Gang, et al. Parameter estimation of wideband underwater acoustic multipath channels based on fractional fourier transform[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5396–5408. doi: 10.1109/tsp.2016.2582466.
|
[9] |
ZHU Yijia, ZHANG Lanyue, and MA Jiaxin. Modeling and estimation of the space-time varying channels[C]. Proceedings of 2021 OES China Ocean Acoustics, Harbin, China, 2021: 758–762.
|
[10] |
SU Yishan, LIU Xuan, JIN Zhigang, et al. Fast estimation of underwater acoustic multipath channel based on LFM signal[C]. Global Oceans 2020: Singapore – U. S. Gulf Coast, Biloxi, USA, 2020: 1–5.
|
[11] |
李家强, 金荣洪, 耿军平, 等. 基于高斯短时分数阶傅里叶变换的多分量LFM信号检测与参数估计[J]. 电子与信息学报, 2007, 29(3): 570–573. doi: 10.3724/SP.J.1146.2005.00857.
LI Jiaqiang, JIN Ronghong, GENG Junping, et al. Detection and estimation of multi-component LFM signals based on gauss short-time fractional Fourier transform[J]. Journal of Electronics &Information Technology, 2007, 29(3): 570–573. doi: 10.3724/SP.J.1146.2005.00857.
|
[12] |
金艳, 段鹏婷, 姬红兵. 复杂噪声环境下基于LVD的LFM信号参数估计[J]. 电子与信息学报, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013.
JIN Yan, DUAN Pengting, and JI Hongbing. Parameter estimation of LFM signals based on LVD in complicated noise environments[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013.
|
[13] |
CHEN Shiqian, DONG Xingjian, PENG Zhike, et al. Nonlinear chirp mode decomposition: A variational method[J]. IEEE Transactions on Signal Processing, 2017, 65(22): 6024–6037. doi: 10.1109/tsp.2017.2731300.
|
[14] |
CHEN Shiqian, YANG Yang, PENG Zhike, et al. Detection of rub-impact fault for rotor-stator systems: A novel method based on adaptive chirp mode decomposition[J]. Journal of Sound and Vibration, 2019, 440: 83–99. doi: 10.1016/j.jsv.2018.10.010.
|
[15] |
赵雅琴, 聂雨亭, 吴龙文, 等. 基于脊路跟踪的变分非线性调频模态分解方法[J]. 浙江大学学报: 工学版, 2020, 54(10): 1874–1882.
ZHAO Yaqin, NIE Yuting, WU Longwen, et al. Multi-component signal separation using variational nonlinear chirp mode decomposition based on ridge tracking[J] Journal of Zhejiang University: Engineering Science, 2020, 54(10): 1874–1882.
|
[16] |
MEIGNEN S, PHAM D H, and MCLAUGHLIN S. On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 2093–2103. doi: 10.1109/TSP.2017.2656838.
|
[17] |
ZHOU Yuehai, TONG Feng, SONG Aijun, et al. Exploiting spatial–temporal joint sparsity for underwater acoustic Multiple-Input–Multiple-Output communications[J]. IEEE Journal of Oceanic Engineering, 2021, 46(1): 352–369. doi: 10.1109/JOE.2019.2958003.
|