Advanced Search
Volume 46 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
NING Gengxin, XIAO Ruojun, XIE Liang. Estimation of Underwater Acoustic Doppler Factor and time Delay based on time-frequency Analysis of multi-component LFM Signals[J]. Journal of Electronics & Information Technology, 2024, 46(2): 688-696. doi: 10.11999/JEIT230068
Citation: NING Gengxin, XIAO Ruojun, XIE Liang. Estimation of Underwater Acoustic Doppler Factor and time Delay based on time-frequency Analysis of multi-component LFM Signals[J]. Journal of Electronics & Information Technology, 2024, 46(2): 688-696. doi: 10.11999/JEIT230068

Estimation of Underwater Acoustic Doppler Factor and time Delay based on time-frequency Analysis of multi-component LFM Signals

doi: 10.11999/JEIT230068
Funds:  The National Natural Science Foundation of China (61871191, 62192712, 62171187), Guangdong Basic and Applied Basic Research Foundation (2023A1515011139)
  • Received Date: 2023-02-20
  • Rev Recd Date: 2023-09-27
  • Available Online: 2023-10-10
  • Publish Date: 2024-02-29
  • The use of the multicomponent Linear Frequency Modulated (LFM) signals for estimating the underwater acoustic Doppler factor and time delay estimation is increasingly common in the practical process. An adaptive chirp-mode-decomposition algorithm based on incomplete residual and ridge segment matching is proposed to solve the problem of inaccurate parameter estimation for multicomponent LFM with cross-terms in the time–frequency domain. The incomplete residual function is used to retain part of the time-frequency information at the intersection point, and the ridge segment matching method is used to provide a more accurate time-frequency ridge, improving the estimation accuracy of the frequency modulation slope and starting frequency of each component of LFM signal. A combination of these two estimators provides the algorithm for estimating the Doppler factor and time delay. The results showed the proposed method effectively solves the estimation error induced by the break of cross-interval, compared with the existing mode-decomposition algorithms. The accuracy of the proposed method for estimating the Doppler factor and time delay is better than that of the existing methods in underwater acoustic multipath propagation.
  • loading
  • [1]
    ZHENG Yuan, YANG Gang, and GUO Qichao. Simulation of underwater broadband noise signals’ Doppler frequency shift[C]. Proceedings of the 16th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 2022: 549–552.
    [2]
    YOO K B and EDELMANN G F. Low complexity multipath and Doppler compensation for direct-sequence spread spectrum signals in underwater acoustic communication[J]. Applied Acoustics, 2021, 180: 108094. doi: 10.1016/j.apacoust.2021.108094.
    [3]
    JOHNSON M, FREITAG L, and STOJANOVIC M. Improved Doppler tracking and correction for underwater acoustic communications[C]. Proceedings of 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, 1997: 575–578.
    [4]
    SHARIF B S, NEASHAM J, HINTON O R, et al. A computationally efficient Doppler compensation system for underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2000, 25(1): 52–61. doi: 10.1109/48.820736.
    [5]
    HUANG Shuxia, FANG Shiliang, and HAN Ning. Iterative matching-based parameter estimation for time-scale underwater acoustic multipath echo[J]. Applied Acoustics, 2020, 159: 107094. doi: 10.1016/j.apacoust.2019.107094.
    [6]
    PISARENKO V F. The retrieval of harmonics from a covariance function[J]. Geophysical Journal of the Royal Astronomical Society, 1973, 33(3): 347–366. doi: 10.1111/j.1365-246X.1973.tb03424.x.
    [7]
    YANG Jie, LIU Xiangtian, and YU Fengqi. Doppler shift estimation algorithm with low computational complexity for underwater acoustic communication[C]. Proceedings of the IEEE 16th International Conference on Communication Technology (ICCT), Hangzhou, China, 2015: 47–50.
    [8]
    ZHAO Yanbo, YU Hua, WEI Gang, et al. Parameter estimation of wideband underwater acoustic multipath channels based on fractional fourier transform[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5396–5408. doi: 10.1109/tsp.2016.2582466.
    [9]
    ZHU Yijia, ZHANG Lanyue, and MA Jiaxin. Modeling and estimation of the space-time varying channels[C]. Proceedings of 2021 OES China Ocean Acoustics, Harbin, China, 2021: 758–762.
    [10]
    SU Yishan, LIU Xuan, JIN Zhigang, et al. Fast estimation of underwater acoustic multipath channel based on LFM signal[C]. Global Oceans 2020: Singapore – U. S. Gulf Coast, Biloxi, USA, 2020: 1–5.
    [11]
    李家强, 金荣洪, 耿军平, 等. 基于高斯短时分数阶傅里叶变换的多分量LFM信号检测与参数估计[J]. 电子与信息学报, 2007, 29(3): 570–573. doi: 10.3724/SP.J.1146.2005.00857.

    LI Jiaqiang, JIN Ronghong, GENG Junping, et al. Detection and estimation of multi-component LFM signals based on gauss short-time fractional Fourier transform[J]. Journal of Electronics &Information Technology, 2007, 29(3): 570–573. doi: 10.3724/SP.J.1146.2005.00857.
    [12]
    金艳, 段鹏婷, 姬红兵. 复杂噪声环境下基于LVD的LFM信号参数估计[J]. 电子与信息学报, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013.

    JIN Yan, DUAN Pengting, and JI Hongbing. Parameter estimation of LFM signals based on LVD in complicated noise environments[J]. Journal of Electronics &Information Technology, 2014, 36(5): 1106–1112. doi: 10.3724/SP.J.1146.2013.01013.
    [13]
    CHEN Shiqian, DONG Xingjian, PENG Zhike, et al. Nonlinear chirp mode decomposition: A variational method[J]. IEEE Transactions on Signal Processing, 2017, 65(22): 6024–6037. doi: 10.1109/tsp.2017.2731300.
    [14]
    CHEN Shiqian, YANG Yang, PENG Zhike, et al. Detection of rub-impact fault for rotor-stator systems: A novel method based on adaptive chirp mode decomposition[J]. Journal of Sound and Vibration, 2019, 440: 83–99. doi: 10.1016/j.jsv.2018.10.010.
    [15]
    赵雅琴, 聂雨亭, 吴龙文, 等. 基于脊路跟踪的变分非线性调频模态分解方法[J]. 浙江大学学报: 工学版, 2020, 54(10): 1874–1882.

    ZHAO Yaqin, NIE Yuting, WU Longwen, et al. Multi-component signal separation using variational nonlinear chirp mode decomposition based on ridge tracking[J] Journal of Zhejiang University: Engineering Science, 2020, 54(10): 1874–1882.
    [16]
    MEIGNEN S, PHAM D H, and MCLAUGHLIN S. On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[J]. IEEE Transactions on Signal Processing, 2017, 65(8): 2093–2103. doi: 10.1109/TSP.2017.2656838.
    [17]
    ZHOU Yuehai, TONG Feng, SONG Aijun, et al. Exploiting spatial–temporal joint sparsity for underwater acoustic Multiple-Input–Multiple-Output communications[J]. IEEE Journal of Oceanic Engineering, 2021, 46(1): 352–369. doi: 10.1109/JOE.2019.2958003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (283) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return