| Citation: | LIU Bo, TIAN Guangliang, XIAO Bin, MA Jianfeng, BI Xiuli. Low Light Image Enhancement With Adaptive Light Initialization[J]. Journal of Electronics & Information Technology, 2024, 46(2): 643-651. doi: 10.11999/JEIT230056 | 
 
	                | [1] | BI Xiuli, HU Jinwu, XIAO Bin, et al. IEMask R-CNN: Information-enhanced Mask R-CNN[J]. IEEE Transactions on Big Data, 2023, 9(2): 688–700. doi:  10.1109/TBDATA.2022.3187413. | 
| [2] | LAND E H. The retinex theory of color vision[J]. Scientific American, 1977, 237(6): 108–129. doi:  10.1038/scientificamerican1277-108. | 
| [3] | LAND E H and MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1–11. doi:  10.1364/JOSA.61.000001. | 
| [4] | SMITHA A, FEBIN I P, and JIDESH P. A retinex based non-local total generalized variation framework for OCT image restoration[J]. Biomedical Signal Processing and Control, 2022, 71: 103234. doi:  10.1016/j.bspc.2021.103234. | 
| [5] | LIU Risheng, MA Long, ZHANG Jiaao, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10556–10565. | 
| [6] | JOBSON D J, RAHMAN Z, and WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451–462. doi:  10.1109/83.557356. | 
| [7] | JOBSON D J, RAHMAN Z, and WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997, 6(7): 965–976. doi:  10.1109/83.597272. | 
| [8] | KIMMEL R, ELAD M, SHAKED D, et al. A variational framework for retinex[J]. International Journal of Computer Vision, 2003, 52(1): 7–23. doi:  10.1023/A:1022314423998. | 
| [9] | FU Xueyang, ZENG Delu, HUANG Yue, et al. A weighted variational model for simultaneous reflectance and illumination estimation[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2782–2790. | 
| [10] | XU Jun, HOU Yingkun, REN Dongwei, et al. STAR: A structure and texture aware retinex model[J]. IEEE Transactions on Image Processing, 2020, 29: 5022–5037. doi:  10.1109/TIP.2020.2974060. | 
| [11] | CAI Bolun, XU Xianming, GUO Kailing, et al. A joint intrinsic-extrinsic prior model for retinex[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4020–4029. | 
| [12] | GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 982–993. doi:  10.1109/TIP.2016.2639450. | 
| [13] | LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2828–2841. doi:  10.1109/TIP.2018.2810539. | 
| [14] | CAO Gang, HUANG Lihui, TIAN Huawei, et al. Contrast enhancement of brightness-distorted images by improved adaptive gamma correction[J]. Computers & Electrical Engineering, 2018, 66: 569–582. doi:  10.1016/j.compeleceng.2017.09.012. | 
| [15] | WANG Ruixing, ZHANG Qing, FU C W, et al. Underexposed photo enhancement using deep illumination estimation[C]. The 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6842–6850. | 
| [16] | REN Xutong, YANG Wenhan, CHENG Wenhuang, et al. LR3M: Robust low-light enhancement via low-rank regularized retinex model[J]. IEEE Transactions on Image Processing, 2020, 29: 5862–5876. doi:  10.1109/TIP.2020.2984098. | 
| [17] | NASA. Retinex image processing[EB/OL]. https://dragon.larc.nasa.gov/retinex/pao/news, 2001. | 
| [18] | VONIKAKIS V, ANDREADIS I, and GASTERATOS A. Fast centre–surround contrast modification[J]. IET Image Processing, 2008, 2(1): 19–34. doi:  10.1049/iet-ipr:20070012. | 
| [19] | LEE C, LEE C, and KIM C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5372–5384. doi:  10.1109/TIP.2013.2284059. | 
| [20] | WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[C]. British Machine Vision Conference 2018, Newcastle, UK, 2018: 155. | 
| [21] | YE Zhengmao, MOHAMADIAN H, and YE Yongmao. Discrete entropy and relative entropy study on nonlinear clustering of underwater and arial images[C]. 2007 IEEE International Conference on Control Applications, Singapore, 2007: 313–318. | 
| [22] | HAUTIÈRE N, TAREL J P, AUBERT D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis and Stereology, 2008, 27(2): 87–95. doi:  10.5566/ias.v27.p87-95. | 
| [23] | REZA A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2004, 38(1): 35–44. doi:  10.1023/B:VLSI.0000028532.53893.82. | 
| [24] | RAHMAN S, RAHMAN M, ABDULLAH-AL-WADUD M, et al. An adaptive gamma correction for image enhancement[J]. EURASIP Journal on Image and Video Processing, 2016, 2016(1): 35. doi:  10.1186/s13640-016-0138-1. | 
| [25] | DONG Xuan, WANG Guan, PANG Yi, et al. Fast efficient algorithm for enhancement of low lighting video[C]. 2011 IEEE International Conference on Multimedia and Expo, Barcelona, 2011: 1–6. | 
| [26] | LI Chongyi, GUO Chunle, and LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4225–4238. doi:  10.1109/TPAMI.2021.3063604. | 
