Citation: | TIAN Feng, LIU Wan, FU Weibo, ZHANG Haoyu. Research on Multi-target Parameter Estimation Method for Overlapping-element Time Division Multiplexing MIMO Radar[J]. Journal of Electronics & Information Technology, 2024, 46(1): 229-239. doi: 10.11999/JEIT230039 |
[1] |
SUN Shunqiao, PETROPULU A P, and POOR H V. MIMO radar for advanced driver-assistance systems and autonomous driving: Advantages and challenges[J]. IEEE Signal Processing Magazine, 2020, 37(4): 98–117. doi: 10.1109/MSP.2020.2978507
|
[2] |
ROOS F, BECHTER J, KNILL C, et al. Radar sensors for autonomous driving: Modulation schemes and interference mitigation[J]. IEEE Microwave Magazine, 2019, 20(9): 58–72. doi: 10.1109/MMM.2019.2922120
|
[3] |
WALDSCHMIDT C, HASCH J, and MENZEL W. Automotive radar — from first efforts to future systems[J]. IEEE Journal of Microwaves, 2021, 1(1): 135–148. doi: 10.1109/JMW.2020.3033616
|
[4] |
HU Xueyao, LU Man, LI Yang, et al. Motion compensation for TDM MIMO radar by sparse reconstruction[J]. Electronics Letters, 2017, 53(24): 1604–1606. doi: 10.1049/el.2017.3524
|
[5] |
BECHTER J, ROOS F, and WALDSCHMIDT C. Compensation of motion-induced phase errors in TDM MIMO radars[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(12): 1164–1166. doi: 10.1109/LMWC.2017.2751301
|
[6] |
LIN Yi, SUN Zhanshan, GUO Min, et al. Phase compensation method based on reference-element for SAA FMCW radar[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(12): 2097–2101. doi: 10.1109/LGRS.2020.3014363
|
[7] |
HU Xueyao, LI Yand, LU Man, et al. A multi-carrier-frequency random-transmission chirp sequence for TDM MIMO automotive radar[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3672–3685. doi: 10.1109/TVT.2019.2900357
|
[8] |
HÄFNER S and THOMÄ R. Compensation of motion-induced phase errors and enhancement of Doppler unambiguity in TDM-MIMO systems by model-based estimation[J]. IEEE Sensors Letters, 2020, 4(10): 7003504. doi: 10.1109/LSENS.2020.3020700
|
[9] |
NEEMAT S, KRASNOV O, VAN DER ZWAN F, et al. Decoupling the Doppler ambiguity interval from the maximum operational range and range-resolution in FMCW radars[J]. IEEE Sensors Journal, 2020, 20(11): 5992–6003. doi: 10.1109/JSEN.2020.2972152
|
[10] |
JUNG J, LIM S, KIM S C, et al. Solving Doppler-angle ambiguity of BPSK-MIMO FMCW radar system[J]. IEEE Access, 2021, 9: 120347–120357. doi: 10.1109/ACCESS.2021.3108783
|
[11] |
NGUYEN M Q, FEGER R, BECHTER J, et al. Fast-chirp FDMA MIMO radar system using range-division multiple-access and Doppler-division multiple-access[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(1): 1136–1148. doi: 10.1109/TMTT.2020.3039795
|
[12] |
王元恺, 肖泽龙, 许建中, 等. 一种改进的FMCW雷达线性调频序列波形[J]. 电子学报, 2017, 45(6): 1288–1293. doi: 10.3969/j.issn.0372-2112.2017.06.002
WANG Yuankai, XIAO Zelong, XU Jianzhong, et al. A modified chirp sequence waveform for FMCW radar[J]. Acta Electronica Sinica, 2017, 45(6): 1288–1293. doi: 10.3969/j.issn.0372-2112.2017.06.002
|
[13] |
周奇特, 李朝晖. 组合时延估计及人工时延方法用于脉冲相干多普勒测速去模糊[J]. 声学学报, 2018, 43(4): 582–591. doi: 10.15949/j.cnki.0371-0025.2018.04.018
ZHOU Qite and LI Chaohui. An dealiasing method for pulse-to-pulse coherent Doppler velocimetry using combining time delay estimation and artificial delay[J]. Acta Acustica, 2018, 43(4): 582–591. doi: 10.15949/j.cnki.0371-0025.2018.04.018
|
[14] |
XU Luzhou, LIEN J, and LI Jian. Doppler-range processing for enhanced high-speed moving target detection using LFMCW automotive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 568–580. doi: 10.1109/TAES.2021.3101768
|
[15] |
SCHERHÄUFL M, HAMMER F, PICHLER-SCHEDER M, et al. Radar distance measurement with Viterbi algorithm to resolve phase ambiguity[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(9): 3784–3793. doi: 10.1109/TMTT.2020.2985357
|
[16] |
GONZALEZ H A, LIU Chen, VOGGINGER B, et al. Doppler disambiguation in MIMO FMCW radars with binary phase modulation[J]. IET Radar, Sonar & Navigation, 2021, 15(8): 884–901. doi: 10.1049/rsn2.12063
|
[17] |
BARAL A B and TORLAK M. Joint Doppler frequency and direction of arrival estimation for TDM MIMO automotive radars[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 980–995. doi: 10.1109/JSTSP.2021.3073572
|
[18] |
XIONG Xiangyu, LIU Hui, DENG Zhenmiao, et al. Micro-Doppler ambiguity resolution with variable shrinkage ratio based on time-delayed cross correlation processing for wideband radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1906–1917. doi: 10.1109/TGRS.2018.2870149
|
[19] |
王超, 王岩飞, 王琦, 等. 基于回波序列最小二乘拟合的高分辨率SAR运动目标速度估计[J]. 电子与信息学报, 2019, 41(5): 1055–1062. doi: 10.11999/JEIT180695
WANG Chao, WANG Yanfei, WANG Qi, et al. Velocity estimation of moving targets based on least square fitting of high-resolution SAR echo sequences[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1055–1062. doi: 10.11999/JEIT180695
|
[20] |
SUN Peilin, Tang Jun, and WAN Shuang. Cramer-Rao bound of joint estimation of target location and velocity for coherent MIMO radar[J]. Journal of Systems Engineering and Electronics, 2014, 25(4): 566–572. doi: 10.1109/JSEE.2014.00066
|