Citation: | LUO Jia, CHEN Qianbin, TANG Lun. Joint Optimization of Data Value and Age of Information in Multi-cluster System with Mixed Data[J]. Journal of Electronics & Information Technology, 2024, 46(1): 308-316. doi: 10.11999/JEIT230023 |
[1] |
KAUL S, YATES R, and GRUTESER M. Real-time status: How often should one update?[C]. Proceedings of the IEEE INFOCOM, Orlando, USA, 2012: 2731–2735.
|
[2] |
ZHANG Shuhang, ZHANG Hongliang, HAN Zhu, et al. Age of information in a cellular Internet of UAVs: Sensing and communication trade-off design[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6578–6592. doi: 10.1109/TWC.2020.3004162
|
[3] |
HU Huimin, XIONG Ke, QU Gang, et al. AoI-minimal trajectory planning and data collection in UAV-assisted wireless powered IoT networks[J]. IEEE Internet of Things Journal, 2021, 8(2): 1211–1223. doi: 10.1109/JIOT.2020.3012835
|
[4] |
TANG Haoyue, WANG Jintao, SONG Linqi, et al. Minimizing age of information with power constraints: Multi-user opportunistic scheduling in multi-state time-varying channels[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(5): 854–868. doi: 10.1109/JSAC.2020.2980911
|
[5] |
XIE Xin, WANG Heng, YU Lei, et al. Online algorithms for optimizing age of information in the IoT systems with multi-slot status delivery[J]. IEEE Wireless Communications Letters, 2021, 10(5): 971–975. doi: 10.1109/LWC.2021.3052569
|
[6] |
UITTO M and HEIKKINEN A. Evaluating 5G uplink performance in low latency video streaming[C]. Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Grenoble, France, 2022: 393–398.
|
[7] |
ZHANG Zhilong, ZENG Minyin, CHEN Mingzhe et al. Joint user grouping, version selection, and bandwidth allocation for live video multicasting[J]. IEEE Transactions on Communications, 2022, 70(1): 350–365. doi: 10.1109/TCOMM.2021.3115480
|
[8] |
LIU Junquan, ZHANG Weizhan, HUANG Shouqin, et al. QoE-driven HAS live video channel placement in the media cloud[J]. IEEE Transactions on Multimedia, 2021, 23: 1530–1541. doi: 10.1109/TMM.2020.2999176
|
[9] |
WEI Bo, SONG Hang, and KATTO J. High-QoE DASH live streaming using reinforcement learning[C]. IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), Tokyo, Japan, 2021: 1–2.
|
[10] |
MA Xiaoteng, LI Qing, ZOU Longhao, et al. QAVA: QoE-aware adaptive video bitrate aggregation for HTTP live streaming based on smart edge computing[J]. IEEE Transactions on Broadcasting, 2022, 68(3): 661–676.
|
[11] |
LIU Dongzhu, ZHU Guangxu, ZENG Qunsong, et al. Wireless data acquisition for edge learning: Data-importance aware retransmission[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 406–420. doi: 10.1109/TWC.2020.3024980
|
[12] |
LIU Dongzhu, ZHU Guangxu, ZHANG Jun, et al. Data-importance aware user scheduling for communication-efficient edge machine learning[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 265–278. doi: 10.1109/TCCN.2020.2999606
|
[13] |
YATES R D. Lazy is timely: Status updates by an energy harvesting source[C]. IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 2015: 3008–3012.
|
[14] |
ZHOU Zhenyu, YU Haijun, MUMTAZ S, et al. Power control optimization for large-scale multi-antenna systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7339–7352. doi: 10.1109/TWC.2020.3010701
|
[15] |
DU Jianbo, CHENG Wenjie, LU Guangyue, et al. Resource pricing and allocation in MEC enabled blockchain systems: An A3C deep reinforcement learning approach[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(1): 33–44. doi: 10.1109/TNSE.2021.3068340
|