Advanced Search
Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
ZHAO Haixia, LI Wenyu, WEI Yongzhuang. Construction of Negabent Function Based on Trace Function over Finite Field[J]. Journal of Electronics & Information Technology, 2024, 46(1): 335-343. doi: 10.11999/JEIT230001
Citation: ZHAO Haixia, LI Wenyu, WEI Yongzhuang. Construction of Negabent Function Based on Trace Function over Finite Field[J]. Journal of Electronics & Information Technology, 2024, 46(1): 335-343. doi: 10.11999/JEIT230001

Construction of Negabent Function Based on Trace Function over Finite Field

doi: 10.11999/JEIT230001
Funds:  The National Natural Science Foundation of China (62162016), Guangxi Natural Science Foundation (2019GXNSFGA245004)
  • Received Date: 2023-01-09
  • Rev Recd Date: 2023-06-09
  • Available Online: 2023-06-14
  • Publish Date: 2024-01-17
  • Negabent function is a Boolean function with optimal autocorrelation and high nonlinearity, which has been widely used in cryptography, coding theory and combination design. In this paper, by combining trace function on a finite field with permutation polynomials, two methods for constructing negabent functions are proposed. Both the two kinds of constructed negabent functions take on such form: ${\text{Tr}}_1^k(\lambda {x^{{2^k} + 1}}) + $$ {\text{Tr}}_1^n(ux){\text{Tr}}_1^n(vx) + {\text{Tr}}_1^n(mx){{\rm{Tr}}} _1^n(dx)$. In the first construction method, negabent functions can be obtained by adjusting the three parameters in $\lambda ,{\text{ }}u,{\text{ }}v,{\text{ }}m$. In particular, when $\lambda \ne 1$, $({2^{n - 1}} - 2)({2^n} - 1)({2^n} - 4)$ negabent functions can be obtained. In the second construction method, negabent functions can be obtained by adjusting the four parameters in $\lambda ,{\text{ }}u,{\text{ }}v,{\text{ }}m,{\text{ }}d$. In particular, when $\lambda \ne 1$, at least ${2^{n - 1}} [({2^{n - 1}} - 2) $$ ({2^{n - 1}} - 3) + {2^{n - 1}} - 4]$ negabent functions can be obtained.
  • loading
  • [1]
    ROTHAUS O S. On “bent” functions[J]. Journal of Combinatorial Theory, Series A, 1976, 20(3): 300–305. doi: 10.1016/0097-3165(76)90024-8
    [2]
    RIERA C and PARKER M G. Generalized bent criteria for Boolean functions (I)[J]. IEEE Transactions on Information Theory, 2006, 52(9): 4142–4159. doi: 10.1109/TIT.2006.880069
    [3]
    任明生. Nega-Hadamard变换和Negabent函数的研究[D]. [硕士论文], 淮北师范大学, 2017.

    REN Mingsheng. Research on Nega-Hadamard transform and Negabent function[D]. [Master dissertation], Huaibei Normal University, 2017.
    [4]
    SCHMIDT K U, PARKER M G, and POTT A. Negabent functions in the Maiorana–McFarland class[C]. 5th International Conference on Sequences and Their Applications-SETA 2008, Lexington, USA, 2008: 390–402.
    [5]
    PARKER M G and POTT A. On Boolean functions which are bent and Negabent[C]. International Workshop on Sequences, Subsequences, and Consequences 2007, Los Angeles, USA, 2007: 9–23.
    [6]
    STĂNICĂ P, GANGOPADHYAY S, CHATURVEDI A, et al. Nega-Hadamard transform, bent and Negabent functions[C]. 6th International Conference on Sequences and Their Applications-SETA 2010, Paris, France, 2010: 359–372.
    [7]
    STANICA P, GANGOPADHYAY S, CHATURVEDI A, et al. Investigations on bent and Negabent functions via the Nega-Hadamard transform[J]. IEEE Transactions on Information Theory, 2012, 58(6): 4064–4072. doi: 10.1109/TIT.2012.2186785
    [8]
    SU Wei, POTT A, and TANG Xiaohu. Characterization of Negabent functions and construction of bent-Negabent functions with maximum algebraic degree[J]. IEEE Transactions on Information Theory, 2013, 59(6): 3387–3395. doi: 10.1109/TIT.2013.2245938
    [9]
    MANDAL B, MAITRA Su, and STĂNICĂ P. On the existence and non-existence of some classes of bent-Negabent functions[J]. Applicable Algebra in Engineering, Communication and Computing, 2022, 33(3): 237–260. doi: 10.1007/s00200-020-00444-w
    [10]
    SARKAR S. Characterizing Negabent Boolean functions over finite fields[C]. 7th International Conference on Sequences and Their Applications-SETA 2012, Waterloo, Canada, 2012: 77–88.
    [11]
    ZHOU Yue and QU Longjiang. Constructions of Negabent functions over finite fields[J]. Cryptography and Communications, 2017, 9(2): 165–180. doi: 10.1007/s12095-015-0167-0
    [12]
    WU Gaofei, LI Nian, ZHANG Yuqing, et al. Several classes of Negabent functions over finite fields[J]. Science China Information Sciences, 2018, 61(3): 038102. doi: 10.1007/s11432-017-9096-0
    [13]
    JIANG Niu, ZHAO Min, YANG Zhiyao, et al. Characterization and properties of bent-Negabent functions[J]. Chinese Journal of Electronics, 2022, 31(4): 786–792. doi: 10.1049/cje.2021.00.417
    [14]
    GUO Fei, WANG Zilong, and GONG Guang. Several secondary methods for constructing bent-Negabent functions[J]. Designs, Codes and Cryptography, 2023, 91(3): 971–995. doi: 10.1007/s10623-022-01133-0
    [15]
    STĂNICĂ P, MANDAL B, and MAITRA S. The connection between quadratic bent-Negabent functions and the Kerdock code[J]. Applicable Algebra in Engineering, Communication and Computing, 2019, 30(5): 387–401. doi: 10.1007/s00200-019-00380-4
    [16]
    周宇, 胡予濮, 董新锋. 布尔函数的设计与分析[M]. 北京: 国防工业出版社, 2015: 20–55.

    ZHOU Yu, HU Yupu, and DONG Xinfeng. Design and Analysis of Boolean Functions[M]. Beijing: National Defense Industry Press, 2015: 20–55.
    [17]
    LIDL R and NIEDERREITER H. Finite Fields[M]. 2nd ed. London: Cambridge University Press, 1996: 54–62.
    [18]
    WU Danyao and YUAN Pingzhi. Further results on permutation polynomials from trace functions[J]. Applicable Algebra in Engineering, Communication and Computing, 2022, 33(4): 341–351. doi: 10.1007/s00200-020-00456-6
    [19]
    SARKAR S. Some results on bent-Negabent Boolean functions over finite fields[EB/OL]. https://arxiv.org/abs/1406.1036, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (277) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return