Citation: | XU Shaoping, CHEN Xiaojun, LUO Jie, CHENG Xiaohui, XIAO Nan. An Improved DIP Denoising Model Based on Internal and External Image Priors and Image Fusion[J]. Journal of Electronics & Information Technology, 2024, 46(1): 299-307. doi: 10.11999/JEIT221580 |
[1] |
米泽田, 晋洁, 李圆圆, 等. 基于多尺度级联网络的水下图像增强方法[J]. 电子与信息学报, 2022, 44(10): 3353–3362. doi: 10.11999/JEIT220375
MI Zetian, JIN Jie, LI Yuanyuan, et al. Underwater image enhancement method based on multi-scale cascade network[J]. Journal of Electronics &Information Technology, 2022, 44(10): 3353–3362. doi: 10.11999/JEIT220375
|
[2] |
张雄, 杨琳琳, 上官宏, 等. 基于生成对抗网络和噪声水平估计的低剂量CT图像降噪方法[J]. 电子与信息学报, 2021, 43(8): 2404–2413. doi: 10.11999/JEIT200591
ZHANG Xiong, YANG Linlin, SHANGGUAN Hong, et al. A low-dose CT image denoising method based on generative adversarial network and noise level estimation[J]. Journal of Electronics &Information Technology, 2021, 43(8): 2404–2413. doi: 10.11999/JEIT200591
|
[3] |
BIALER O, GARNETT N, and TIRER T. Performance advantages of deep neural networks for angle of arrival estimation[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 3907–3911.
|
[4] |
KIM S. Deep recurrent neural networks with layer-wise multi-head attentions for punctuation restoration[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 2019: 7280–7284.
|
[5] |
ZHANG Kai, ZUO Wangmeng, and ZHANG Lei. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608–4622. doi: 10.1109/TIP.2018.2839891
|
[6] |
ANWAR S and BARNES N. Real image denoising with feature attention[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 3155–3164.
|
[7] |
VALSESIA D, FRACASTORO G, and MAGLI E. Deep graph-convolutional image denoising[J]. IEEE Transactions on Image Processing, 2020, 29: 8226–8237. doi: 10.1109/TIP.2020.3013166
|
[8] |
ZAMIR S W, ARORA A, KHAN S, et al. Restormer: Efficient transformer for high-resolution image restoration[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 5718–5729.
|
[9] |
ZHANG Kai, ZUO Wangmeng, CHEN Yunjin, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155. doi: 10.1109/TIP.2017.2662206
|
[10] |
LEHTINEN J, MUNKBERG J, HASSELGREN J, et al. Noise2Noise: Learning image restoration without clean data[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 2971–2980.
|
[11] |
KRULL A, BUCHHOLZ T O, and JUG F. Noise2Void-learning denoising from single noisy images[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2124–2132.
|
[12] |
HUANG Tao, LI Songjiang, JIA Xu, et al. Neighbor2Neighbor: Self-supervised denoising from single noisy images[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 14776–14785.
|
[13] |
LEMPITSKY V, VEDALDI A, and ULYANOV D. Deep image prior[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9446–9454.
|
[14] |
ULYANOV D, VEDALDI A, and LEMPITSKY V. Deep image prior[J]. International Journal of Computer Vision, 2020, 128(7): 1867–1888. doi: 10.1007/s11263-020-01303-4
|
[15] |
RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234–241.
|
[16] |
DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080–2095. doi: 10.1109/TIP.2007.901238
|
[17] |
MA Kede, LI Hui, YONG Hongwei, et al. Robust multi-exposure image fusion: A structural patch decomposition approach[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2519–2532. doi: 10.1109/TIP.2017.2671921
|
[18] |
LUO Jingyu, XU Shaoping, and LI Chongxi. A fast denoising fusion network using internal and external priors[J]. Signal, Image and Video Processing, 2021, 15(6): 1275–1283. doi: 10.1007/s11760-021-01858-w
|
[19] |
DONG Weisheng, ZHANG Lei, SHI Guangming, et al. Nonlocally centralized sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620–1630. doi: 10.1109/TIP.2012.2235847
|
[20] |
GU Shuhang, ZHANG Lei, ZUO Wangmeng, et al. Weighted nuclear norm minimization with application to image denoising[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2862–2869.
|
[21] |
YUE Zongsheng, YONG Hongwei, ZHAO Qian, et al. Variational denoising network: Toward blind noise modeling and removal[C]. Proceedings of the 33rd Conference on Neural Information Processing Systems, Vancouver, Canada, 2019: 1688–1699.
|
[22] |
CHOI J H, ELGENDY O A, and CHAN S H. Optimal combination of image denoisers[J]. IEEE Transactions on Image Processing, 2019, 28(8): 4016–4031. doi: 10.1109/TIP.2019.2903321
|
[23] |
ABDELHAMED A, LIN S, and BROWN M S. A high-quality denoising dataset for smartphone cameras[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1692–1700.
|