Advanced Search
Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
YAN Jing, ZHANG Ting, YOU Kanglin, SHANG Zhigang, YANG Xian, LUO Xiaoyuan. Research on Underwater Target Localization Algorithm Considering the Uncertainty of Anchor Position[J]. Journal of Electronics & Information Technology, 2024, 46(1): 67-73. doi: 10.11999/JEIT221563
Citation: YAN Jing, ZHANG Ting, YOU Kanglin, SHANG Zhigang, YANG Xian, LUO Xiaoyuan. Research on Underwater Target Localization Algorithm Considering the Uncertainty of Anchor Position[J]. Journal of Electronics & Information Technology, 2024, 46(1): 67-73. doi: 10.11999/JEIT221563

Research on Underwater Target Localization Algorithm Considering the Uncertainty of Anchor Position

doi: 10.11999/JEIT221563
Funds:  The National Natural Science Foundation of China (62222314, 61973263, 62033011), The Youth Talent Program of Hebei (BJ2020031), The Natural Science Foundation of Hebei Province (F2022203001, F2021203056), The Central Guidance Local Foundation of Hebei Province (226Z3201G)
  • Received Date: 2022-12-21
  • Rev Recd Date: 2023-05-23
  • Available Online: 2023-05-27
  • Publish Date: 2024-01-17
  • Considering the effects of an asynchronous clock and acoustic stratification, the localization problem of an underwater target node was studied when the measurement process was disrupted by unknown noise and the anchor position was uncertain. The time of flight model between underwater nodes is constructed, an interactive asynchronous communication protocol is designed, and an optimization objective function to minimize the localization error is established. An underwater target localization algorithm based on deep reinforcement learning is proposed, and layer normalization is used to improve the generalization ability of the model. Finally, simulation and experimental results validate the effectiveness of the proposed method.
  • loading
  • [1]
    KHAN H, HASSAN S A, and JUNG H. On underwater wireless sensor networks routing protocols: A review[J]. IEEE Sensors Journal, 2020, 20(18): 10371–10386. doi: 10.1109/JSEN.2020.2994199
    [2]
    CARROLL P, MAHMOOD K, ZHOU Shengli, et al. On-demand asynchronous localization for underwater sensor networks[J]. IEEE Transactions on Signal Processing, 2014, 62(13): 3337–3348. doi: 10.1109/TSP.2014.2326996
    [3]
    RAMEZANI H, JAMALI-RAD H, and LEUS G. Target localization and tracking for an isogradient sound speed profile[J]. IEEE Transactions on Signal Processing, 2013, 61(6): 1434–1446. doi: 10.1109/TSP.2012.2235432
    [4]
    SHI Xiufang, MAO Guoqiang, ANDERSON B D O, et al. Robust localization using range measurements with unknown and bounded errors[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 4065–4078. doi: 10.1109/TWC.2017.2691699
    [5]
    ANGJELICHINOSKI M, DENKOVSKI D, ATANASOVSKI V, et al. Cramér–Rao lower bounds of RSS-based localization with anchor position uncertainty[J]. IEEE Transactions on Information Theory, 2015, 61(5): 2807–2834. doi: 10.1109/TIT.2015.2409270
    [6]
    MRIDULA K M and AMEER P M. Localization under anchor node uncertainty for underwater acoustic sensor networks[J]. International Journal of Communication Systems, 2018, 31(2): e3445. doi: 10.1002/dac.3445
    [7]
    YAN Jing, GUO Dongbo, LUO Xiaoyuan, et al. AUV-aided localization for underwater acoustic sensor networks with current field estimation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8855–8870. doi: 10.1109/tvt.2020.2996513
    [8]
    CHANG Shengming, LI Youming, HE Yucheng, et al. RSS-based target localization in underwater acoustic sensor networks via convex relaxation[J]. Sensors, 2019, 19(10): 2323. doi: 10.3390/s19102323
    [9]
    YAN Jing, MENG Yuan, YANG Xian, et al. Privacy-preserving localization for underwater sensor networks via deep reinforcement learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1880–1895. doi: 10.1109/tifs.2020.3045320
    [10]
    HAARNOJA T, TANG Haoran, ABBEEL P, et al. Reinforcement learning with deep energy-based policies[C]. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1352–1361.
    [11]
    HAARNOJA T, ZHOU A, ABBEEL P, et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor[C]. Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 2018: 1856–1865.
    [12]
    HUANG Baoqi, XIE Lihua, and YANG Zai. TDOA-based source localization with distance-dependent noises[J]. IEEE Transactions on Wireless Communications, 2015, 14(1): 468–480. doi: 10.1109/TWC.2014.2351798
    [13]
    EROFEEVA V, GRANICHIN O, GRANICHINA O, et al. Sensor Selection under unknown but bounded disturbances in multi-target tracking problem[C]. Proceedings of the 27th Mediterranean Conference on Control and Automation, Akko, Israel, 2019: 215–220.
    [14]
    YAN Jing, YI Ming, YANG Xian, et al. Broad learning-based localization for underwater sensor networks with stratification compensation[J]. IEEE Internet of Things Journal, 2023.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (447) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return