Citation: | WANG Yang, LIU Yueyang, LIAO Xi, ZHOU Jihua, SONG Haozheng, REN Minghao, CHEN Qianbin. Research on Reflection and Transmission Characteristics of the Millimeter Wave Channel at 40~50 GHz for 6G ISAC[J]. Journal of Electronics & Information Technology, 2024, 46(1): 146-154. doi: 10.11999/JEIT221560 |
[1] |
IMT-2030(6G)推进组. 6G总体愿景与潜在关键技术白皮书[R]. 2021.
IMT-2030 (6G) Promotion Group. White paper on 6G Vision and Candidate Technologies[R]. 2021.
|
[2] |
WANG Jian, VARSHNEY N, GENTILE C, et al. Integrated sensing and communication: Enabling techniques, applications, tools and data sets, standardization, and future directions[J]. IEEE Internet of Things Journal, 2022, 9(23): 23416–23440. doi: 10.1109/JIOT.2022.3190845
|
[3] |
LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632
|
[4] |
WANG Xiong, KONG Linghe, KONG Fanxin, et al. Millimeter wave communication: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 1616–1653. doi: 10.1109/COMST.2018.2844322
|
[5] |
HONG Wei, JIANG Zhihao, YU Chao, et al. The role of millimeter-wave technologies in 5G/6G wireless communications[J]. IEEE Journal of Microwaves, 2021, 1(1): 101–122. doi: 10.1109/JMW.2020.3035541
|
[6] |
CHANG Bo, TANG Wei, YAN Xiaoyu, et al. Integrated scheduling of sensing, communication, and control for mmWave/THz communications in cellular connected UAV networks[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7): 2103–2113. doi: 10.1109/JSAC.2022.3157366
|
[7] |
EL FAITORI S and SALOUS S. Reflection and penetration loss wideband measurements of building materials at 28 GHz and 39 GHz[C]. The 2022 16th European Conference on Antennas and Propagation, Madrid, Spain, 2022: 1–4.
|
[8] |
YANG Wenfei, HUANG Jie, ZHANG Jiliang, et al. Measurements of reflection and penetration loss in indoor environments in the 39-GHz band[C]. The 2021 15th European Conference on Antennas and Propagation, Dusseldorf, Germany, 2021: 1–5.
|
[9] |
XING Yunchou, KANHERE O, JU Shihao, et al. Indoor wireless channel properties at millimeter wave and sub-terahertz frequencies[C]. 2019 IEEE Global Communications Conference, Waikoloa, USA, 2019: 1–6.
|
[10] |
LUO Jiangui, SHAO Yu, LIAO Xi, et al. Complex permittivity estimation for cloths based on QPSO method over (40 to 50) GHz[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 600–605. doi: 10.1109/TAP.2020.3005032
|
[11] |
ITU. Recommendation ITU-R P. 2040-1 Effects of building materials and structures on radiowave propagation above about 100 MHz[S]. 2015.
|
[12] |
TEH C H, CHUNG B K, and LIM E H. Multilayer wall correction factors for indoor ray-tracing radio propagation modeling[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(1): 604–608. doi: 10.1109/TAP.2019.2943397
|
[13] |
BALASUBRAMANIAN M, CAMPBELL S D, WERNER P L, et al. Geometrical optics solution for periodic multilayer anisotropic slab scattering[C]. The 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena, New York, USA, 2020: 130–132.
|
[14] |
BORN M and WOLF E. Principles of Optics[M]. 7th expanded ed. Cambridge: Cambridge University Press, 1999.
|
[15] |
SHEIKH F, GAO Yuan, and KAISER T. A study of diffuse scattering in massive MIMO channels at terahertz frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 997–1008. doi: 10.1109/TAP.2019.2944536
|
[16] |
罗健桂. 典型建筑材料在毫米波频段下的电磁特性研究[D]. [硕士论文], 重庆邮电大学, 2020.
LUO Jiangui. Electromagnetic property of typical building materials at millimeter-wave band[D]. [Master dissertation], Chongqing University of Posts and Telecommunications, 2020.
|
[17] |
DEGLI-ESPOSTI V, ZOLI M, VITUCCI E M, et al. A method for the electromagnetic characterization of construction materials based on Fabry–Pérot resonance[J]. IEEE Access, 2017, 5: 24938–24943. doi: 10.1109/ACCESS.2017.2767278
|