Advanced Search
Volume 46 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LIANG Mengwei, HE Jin, SHU Ting, YU Wenxian. Linear Coprime Sensor Location Arrays: Array Calibration and Beamforming[J]. Journal of Electronics & Information Technology, 2024, 46(1): 240-248. doi: 10.11999/JEIT221539
Citation: LIANG Mengwei, HE Jin, SHU Ting, YU Wenxian. Linear Coprime Sensor Location Arrays: Array Calibration and Beamforming[J]. Journal of Electronics & Information Technology, 2024, 46(1): 240-248. doi: 10.11999/JEIT221539

Linear Coprime Sensor Location Arrays: Array Calibration and Beamforming

doi: 10.11999/JEIT221539
Funds:  The National Natural Science Foundation of China (61771302)
  • Received Date: 2022-12-13
  • Rev Recd Date: 2023-05-25
  • Available Online: 2023-06-09
  • Publish Date: 2024-01-17
  • Focusing on investigating the problems of array calibration and beamforming for Coprime Location Arrays (CLA), a new beamforming algorithm, which is called CLA-SILAC-INCM algorithm is proposed for the partly calibrated CLAs, by exploiting the Simultaneous Interference Localization and Array Calibration (SILAC) technique. Theoretical analysis shows that when the CLA contains not less than 3 fully calibrated antenna elements, highly accurate and unambiguous estimation for interference direction and array gain-phase error vector can be obtained using the SILAC technique. Afterward, the Interference plus Noise Covariance Matrix (INCM) is reconstructed and the optimal beamforming weighting vector is computed. Simulation results show that the proposed CLA-SILAC-INCM algorithm exhibits better performance compared with existing algorithms, especially when the signal-to-noise ratio is close to interference-to-noise ratio.
  • loading
  • [1]
    CARLSON B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 397–401. doi: 10.1109/7.7181
    [2]
    LI Jian, STOICA P, and WANG Zhisong. On robust Capon beamforming and diagonal loading[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1702–1715. doi: 10.1109/TSP.2003.812831
    [3]
    SULEESATHIRA R. Robust null broadening beamforming based on adaptive diagonal loading for look direction mismatch[C]. The 13th International Conference on Knowledge and Smart Technology (KST), Bangsaen, Thailand, 2021: 49–54.
    [4]
    CHANG L and YEH C C. Performance of DMI and eigenspace-based beamformers[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(11): 1336–1347. doi: 10.1109/8.202711
    [5]
    WANG Xiangmin, ZHENG Wan, GUO Lingling, et al. A robust eigenspace-based adaptive beamforming algorithm[C/OL]. The IET International Radar Conference (IET IRC 2020), 2020: 1404–1409.
    [6]
    DOGAN M C and MENDEL J M. Cumulant-based blind optimum beamforming[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 722–741. doi: 10.1109/7.303742
    [7]
    ZHANG Jun, XU Xiangyuan, CHEN Zhifei, et al. High-resolution DOA estimation algorithm for a single acoustic vector sensor at low SNR[J]. IEEE Transactions on Signal Processing, 2020, 68: 6142–6158. doi: 10.1109/TSP.2020.3021237
    [8]
    VOROBYOV S A, GERSHMAN A B, and LUO Zhiquan. Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem[J]. IEEE Transactions on Signal Processing, 2003, 51(2): 313–324. doi: 10.1109/TSP.2002.806865
    [9]
    HUANG Yongwei, YANG Wenzheng, and VOROBYOV S A. Robust adaptive beamforming maximizing the worst-case SINR over distributional uncertainty sets for random INC matrix and signal steering vector[C]. The 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022: 4918–4922.
    [10]
    APPLEBAUM S P and CHAPMAN D J. Adaptive arrays with main beam constraints[J]. IEEE Transactions on Antennas and Propagation, 1976, 24(5): 650–662. doi: 10.1109/TAP.1976.1141416
    [11]
    LIAO Bin, GUO Chongtao, HUANG Lei, et al. Robust adaptive beamforming with precise main beam control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 345–356. doi: 10.1109/TAES.2017.2650578
    [12]
    GU Yujie and LESHEM A. Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3881–3885. doi: 10.1109/TSP.2012.2194289
    [13]
    ZHENG Zhi, YANG Tong, WANG Wenqin, et al. Robust adaptive beamforming via simplified interference power estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 3139–3152. doi: 10.1109/TAES.2019.2899796
    [14]
    YANG Liusha, MCKAY M R, and COUILLET R, et al. High-dimensional MVDR beamforming: Optimized solutions based on spiked random matrix models[J]. IEEE Transactions on Signal Processing, 2018, 66(7): 1933–1947. doi: 10.1109/TSP.2018.2799183
    [15]
    PAL P and VAIDYANATHAN P P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom[J]. IEEE Transactions on Signal Processing, 2010, 58(8): 4167–4181. doi: 10.1109/TSP.2010.2049264
    [16]
    卢建, 杨剑, 侯博, 等. 基于虚拟阵元信号重构的嵌套阵稳健波束形成[J]. 系统工程与电子技术, 2021, 43(5): 1161–1168. doi: 10.12305/j.issn.1001-506X.2021.05.01

    LU Jian, YANG Jian, HOU Bo, et al. Robust beamforming of nested array based on virtual elements signal reconstruction[J]. Systems Engineering and Electronics, 2021, 43(5): 1161–1168. doi: 10.12305/j.issn.1001-506X.2021.05.01
    [17]
    VAIDYANATHAN P P and PAL P. Sparse sensing with Co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 573–586. doi: 10.1109/TSP.2010.2089682
    [18]
    吴癸周, 张源, 张文俊, 等. 基于互质阵列的运动单站信号直接定位方法[J]. 雷达学报, 2022, 11(4): 692–704. doi: 10.12000/JR22056

    WU Guizhou, ZHANG Yuan, ZHANG Wenjun, et al. Coprime array based direct position determination of signals with single moving observation[J]. Journal of Radars, 2022, 11(4): 692–704. doi: 10.12000/JR22056
    [19]
    刘可, 朱泽政, 于军, 等. 基于互质阵列孔洞分析的稀疏阵列设计方法[J]. 电子与信息学报, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024

    LIU Ke, ZHU Zezheng, YU Jun, et al. Sparse array design methods based on hole analysis of the coprime array[J]. Journal of Electronics &Information Technology, 2022, 44(1): 372–379. doi: 10.11999/JEIT201024
    [20]
    何劲, 唐莽, 舒汀, 等. 阵元位置互质的线性阵列: 互耦分析和角度估计[J]. 电子与信息学报, 2022, 44(8): 2852–2858. doi: 10.11999/JEIT210489

    HE Jin, TANG Mang, SHU Ting, et al. Linear coprime sensor location arrays: Mutual coupling effect and angle estimation[J]. Journal of Electronics &Information Technology, 2022, 44(8): 2852–2858. doi: 10.11999/JEIT210489
    [21]
    HE Jin, SHU Ting, DAKULAGI V, et al. Simultaneous interference localization and array calibration for robust adaptive beamforming with partly calibrated arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2850–2863. doi: 10.1109/TAES.2021.3068430
    [22]
    WAX M and KAILATH T. Detection of signals by information theoretic criteria[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(2): 387–392. doi: 10.1109/TASSP.1985.1164557
    [23]
    YANG Zai, STOICA P, and TANG Jinhui. Source resolvability of spatial-smoothing-based subspace methods: A hadamard product perspective[J]. IEEE Transactions on Signal Processing, 2019, 67(10): 2543–2553. doi: 10.1109/TSP.2019.2908142
    [24]
    WU H T, YANG J F, and CHEN F K. Source number estimators using transformed Gerschgorin radii[J]. IEEE Transactions on Signal Processing, 1995, 43(6): 1325–1333. doi: 10.1109/78.388844
    [25]
    金芳晓, 邱天爽, 王鹏, 等. 基于l1稀疏正则化的信源个数估计新算法[J]. 通信学报, 2016, 37(10): 75–80. doi: 10.11959/j.issn.1000-436x.2016198

    JIN Fangxiao, QIU Tianshuang, WANG Peng, et al. New source number estimation algorithm based on l1 sparse regularization[J]. Journal on Communications, 2016, 37(10): 75–80. doi: 10.11959/j.issn.1000-436x.2016198
    [26]
    张小飞, 李建峰, 徐大专, 等. 阵列信号处理及MATLAB实现[M]. 2版. 北京: 电子工业出版社, 2020: 72–74.

    ZHANG Xiaofei, LI Jianfeng, XU Dazhuan, et al. Array Signal Processing and MATLAB Implementation[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2020: 72–74.
    [27]
    MENDEL J M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications[J]. Proceedings of the IEEE, 1991, 79(3): 278–305. doi: 10.1109/5.75086
    [28]
    ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    [29]
    REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (385) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return